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Abstract

We present a robust boundary integral equation
formulation for elastodynamic scattering prob-
lems in two dimensions formulated via Helmholtz
decompositions. The main advantage of this for-
mulation is its reliance on Helmholtz layer po-
tentials only, which are simpler than their coun-
terparts that correspond to the fundamental so-
lution of Navier equations.
Keywords: Navier equations, combined field in-
tegral equations

1 Introduction

Numerical solutions of elastic scattering prob-
lems based on boundary integral equation for-
mulations are attractive alternatives over their
volumetric counterparts [4]. Following ideas in-
troduced in [2], we introduce in this paper ro-
bust and well-conditioned boundary integral equa-
tion formulations of elastic scattering problems
that are based on the Helmholtz decomposition
of the elastic fields in two dimensions, which al-
lows use to deal only with Helmholtz layer po-
tentials.

2 Helmholtz decomposition formulation
of Navier scattering problems

Considering a bounded domain Ω in R2 whose
boundary Γ is a closed Lipschitz curve, we are
interested in solving the impenetrable elastic scat-
tering problem in the exterior of Ω, that is look
for solutions of the time-harmonic Navier equa-
tion

∇ · σ(u) + ω2u = 0 in Ω+ := R2 \ Ω (1)

that satisfy the Kupradze radiation condition at
infinity, where σ is the stress tensor associated
with the field u and the Lamé constants λ and
µ. We assume that on the boundary Γ the so-
lution u of (1) satisfies the Dirichlet boundary
condition

u = −uinc on Γ.

The scattered field can be expressed in the form
of the Helmholtz decomposition u = up + us.

up := − 1

k2
p

∇ ∇ ·u us :=
1

k2
s

−−→
curl curl u (2)

where curl u := ∂1u2−∂2u1 and
−−→
curl ϕ = [∂2ϕ −

∂1ϕ]>. Hence, following the ideas in [2] we can
look for the fields u in the form

u = ∇ϕp +
−−→
curl ϕs (3)

where the scalar functions ϕp and ϕs are radia-
tive solutions of scalar Helmholtz equations in
Ω+ with wavenumbers kp and ks respectively. It
is straightforward to see that ϕp and ϕs satisfy
the following coupled boundary conditions

∂nϕp + ∂sϕs = −uinc · n on Γ

−∂sϕp + ∂nϕs = uinc · t on Γ (4)

where ∂n and ∂s denote the normal and respec-
tively the tangential derivatives on Γ, whereas
n and t denote the unit exterior normal and re-
spectively the unit tangent on Γ. We look for
ϕp and ϕs in the form of regularized combined
field Helmholtz potentials with wavenumbers kp
and respectively ks

ϕp := DLΓ,kp [Ypgp]− SLΓ,kp [gp]

ϕs := DLΓ,ks [Ysgs]− SLΓ,ks [gs] in Ω+,

where gp and gs are unknown functional densi-
ties defined on Γ, and Yp and Ys are operators
to be specified in what follows. We are led to
the following system of BIE for the boundary
densities gp and gs

ADH

[
gp
gs

]
= −

[
uinc · n
−uinc · t

]

A11
DH := 1

2I +NpYp −K>p
A12

DH := 1
2∂sYs − ∂sVs − k2

st · Vs[nYs]−K>s ∂sYs
A21

DH := −1
2∂sYp + ∂sVp + k2

pt · Vp[nYp] +K>p ∂sYp

A22
DH := 1

2I +NsYs −K>s .
(5)
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ω N Helmholtz decomposition BIE (5)
ε∞ Kite ε∞ Starfish

16 64 6.4 × 10−3 3.2 × 10−3

16 128 7.4 × 10−7 2.2 × 10−7

16 256 8.5 × 10−16 5.6 × 10−16

32 128 2.3 × 10−3 3.5 × 10−3

32 256 5.2 × 10−9 8.6 × 10−9

32 512 4.5 × 10−15 1.1 × 10−14

Table 1: Errors in the method of manufactured
solution using the Helmholtz decomposition BIE
for the smooth kite and starfish geometries using
the K-M Nyström discretization with for differ-
ent values of the frequency ω and material pa-
rameter values λ = 1, µ = 1, at various levels of
discretization.

In equation (5) the subscripts p and s refer to
the wavenumbers kp and respectively ks in the
definition of the corresponding boundary inte-
gral operators, V is the Helmholtz single layer
BIO, K> is the adjoint of the double layer BIO,
and N is the hypersingular operator. We estab-
lish the following

Theorem 1 Choosing Yp = −2Vkp+iεp and Ys =
−2Vks+iεs with 0 < εp and 0 < εs, the operators
ADH are invertible in L2(Γ)×L2(Γ) for all fre-
quencies ω > 0 when Γ is a smooth closed curve.

3 Numerical results

The Nyström discretization of the BIE (5) is
rather straightforward, and we present two such
strategies, one based on the classical Kussmaul-
Martensen (K-M) kernel singularity splitting [3],
the other on QBX [1]. In the case of piece-
smooth boundaries, we use sigmoid transforms
(with polynomial degree p) in conjunction with
K-M methods, and Chebyshev meshes together
with Clenshaw-Curtis quadratures in connection
with QBX Nyström discretizations. We present
in Tables 1-2 far field errors achieved by the Nys-
tröm discretizations of the Helmholtz decompo-
sition BIE (5) in the context of the method of
manufactured solutions. Similar accuracy lev-
els are observed in the case of plane wave in-
cident fields. Furthermore, the BIE formula-
tions (5) behave like integral equations of the
second kind, and their numbers of GMRES it-
erations grow only logarithmically with the fre-
quency in the high frequency regime.

ω N Teardrop
K-M p = 3 QBX

16 128 8.6 × 10−4 7.3 × 10−3

16 256 1.0 × 10−4 1.4 × 10−4

16 512 1.2 × 10−5 2.5 × 10−5

16 1024 1.5 × 10−6 1.3 × 10−6

32 256 2.9 × 10−3 1.7 × 10−3

32 512 4.7 × 10−4 3.8 × 10−4

32 1024 6.0 × 10−5 3.5 × 10−5

32 2048 7.6 × 10−6 3.7 × 10−7

Table 2: Far-field errors in the method of man-
ufactured solution using the Helmholtz decom-
position BIE for the singular teardrop geometry
with for different values of the frequency ω and
material parameter values λ = 1, µ = 1, at var-
ious levels of discretization.
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