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Abstract

We present a robust boundary integral equation
formulation for elastodynamic scattering prob-
lems in two dimensions formulated via Helmholtz
decompositions. The main advantage of this for-
mulation is its reliance on Helmholtz layer po-
tentials only, which are simpler than their coun-
terparts that correspond to the fundamental so-
lution of Navier equations.
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1 Introduction

Numerical solutions of elastic scattering prob-
lems based on boundary integral equation for-
mulations are attractive alternatives over their
volumetric counterparts [4]. Following ideas in-
troduced in [2], we introduce in this paper ro-

bust and well-conditioned boundary integral equa-

tion formulations of elastic scattering problems
that are based on the Helmholtz decomposition
of the elastic fields in two dimensions, which al-
lows use to deal only with Helmholtz layer po-
tentials.

2 Helmholtz decomposition formulation
of Navier scattering problems

Considering a bounded domain €2 in R? whose
boundary I' is a closed Lipschitz curve, we are

interested in solving the impenetrable elastic scat-

tering problem in the exterior of {2, that is look
for solutions of the time-harmonic Navier equa-
tion

V-ou)+w’u=0 in Q" :=R*2\Q (1)

that satisfy the Kupradze radiation condition at
infinity, where o is the stress tensor associated
with the field u and the Lamé constants A and
1. We assume that on the boundary I' the so-
lution u of (1) satisfies the Dirichlet boundary
condition

The scattered field can be expressed in the form
of the Helmholtz decomposition u = u, + u,.

1 1
u, = —EV V-u u, 1= —2(;?1 curl u (2)
D s

—
where curl u := 9yug—02u; and curl ¢ = [Dap —
O1¢]". Hence, following the ideas in [2] we can
look for the fields u in the form

—
u = V, + curl p; (3)

where the scalar functions ¢, and ¢, are radia-
tive solutions of scalar Helmholtz equations in
Q" with wavenumbers k&, and ks respectively. It
is straightforward to see that ¢, and ¢, satisfy
the following coupled boundary conditions

inc

Onpp +0sps = —u™-n on I
—0spp + Onps = u™c ¢ onT (4)

where 0, and 95 denote the normal and respec-
tively the tangential derivatives on I', whereas
n and t denote the unit exterior normal and re-
spectively the unit tangent on I'. We look for
¢p and g in the form of regularized combined
field Helmholtz potentials with wavenumbers k),
and respectively kg

¢p = DLry,[Ypgp] — SLri,[9p]
¢s = DL, [Ysgs| = SLrk,[9s]

where g, and g, are unknown functional densi-
ties defined on I', and Y}, and Y, are operators
to be specified in what follows. We are led to
the following system of BIE for the boundary
densities g, and g,

in QF,

inc

Ip| _ _ |0 n
o] [

Apby =11+ N,Y, — K]

APy = 30.Ys — 0.V, — k2t - Vi[nYi] — K] 0,Y,
Abg = =305y + 0V + kit - Vo[nY,] + K 9.Y,
AZ, = 1T+ N,Y, - K.
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w | N | Helmholtz decomposition BIE (5)
€00 Kite €00 Starfish

16| 64 | 6.4 x 1073 3.2 x 1073

16 | 128 | 7.4 x 1077 2.2 x 1077

16 | 256 | 8.5 x 1016 5.6 x 10716

32128 | 2.3 x 1073 3.5 x 1073

32| 256 | 5.2 x 107° 8.6 x 1079

32| 512 | 4.5 x 10715 1.1 x 10714

Table 1: Errors in the method of manufactured
solution using the Helmholtz decomposition BIE
for the smooth kite and starfish geometries using
the K-M Nystrom discretization with for differ-
ent values of the frequency w and material pa-
rameter values A = 1, u = 1, at various levels of
discretization.

In equation (5) the subscripts p and s refer to
the wavenumbers &, and respectively k, in the
definition of the corresponding boundary inte-
gral operators, V' is the Helmholtz single layer
BIO, KT is the adjoint of the double layer BIO,
and N is the hypersingular operator. We estab-
lish the following

Theorem 1 Choosing Y, = =2V 1, and Y =
—2Vi,4ie, with 0 < e, and 0 < €5, the operators
Apg are invertible in L?(T') x L?(T") for all fre-
quencies w > 0 when I' is a smooth closed curve.

3 Numerical results

The Nystrom discretization of the BIE (5) is
rather straightforward, and we present two such
strategies, one based on the classical Kussmaul-
Martensen (K-M) kernel singularity splitting [3],
the other on QBX [1]. In the case of piece-
smooth boundaries, we use sigmoid transforms
(with polynomial degree p) in conjunction with
K-M methods, and Chebyshev meshes together
with Clenshaw-Curtis quadratures in connection
with QBX Nystrom discretizations. We present
in Tables 1-2 far field errors achieved by the Nys-
trom discretizations of the Helmholtz decompo-
sition BIE (5) in the context of the method of
manufactured solutions. Similar accuracy lev-
els are observed in the case of plane wave in-
cident fields. Furthermore, the BIE formula-
tions (5) behave like integral equations of the
second kind, and their numbers of GMRES it-
erations grow only logarithmically with the fre-
quency in the high frequency regime.

w N Teardrop
K-Mp=3 QBX
16| 128 [ 8.6 x 107% | 7.3 x 1073
16 | 256 | 1.0 x 107* | 1.4 x 10~*
16 | 512 | 1.2 x 107° | 2.5 x 107°

16 | 1024 | 1.5 x 1076 | 1.3 x 1076

32 256 [ 29 x 1073 [ 1.7 x 1073
32| 512 |47 x107* |38 x 1074
32 [ 1024 | 6.0 x 107° | 3.5 x 107°
32 (2048 | 7.6 x 1076 | 3.7 x 1077
Table 2: Far-field errors in the method of man-
ufactured solution using the Helmholtz decom-
position BIE for the singular teardrop geometry
with for different values of the frequency w and
material parameter values A = 1, 4 = 1, at var-
ious levels of discretization.
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