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Maximizing the electromagnetic chirality for metallic nanowires in the visible spectrum
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Abstract

Electromagnetic chirality describes differences
in the interaction of scattering objects with elec-
tromagnetic fields of different helicity. If the
scattering behavior of an object with respect
to incident waves of one helicity cannot be re-
produced with incident fields of the opposite
helicity, then the object is said to be electro-
magnetically chiral (em-chiral), otherwise it is
called em-achiral. Em-chirality can be quanti-
fied by chirality measures that attain the value
0 for an em-achiral object and the value 1 for
a maximally em-chiral object. We investigate
a shape optimization problem, where the goal
is to construct thin metallic nanowires that ex-
hibit large measures of em-chirality at a given
frequency. We present a gradient based opti-
mization method, based on an asymptotic rep-
resentation formula for approximating scattered
fields due to thin metallic scattering objects.
Keywords: Electromagnetic chirality, shape op-
timization, asymptotic representation formula

1 Scattering from metallic wires

Let ω > 0 denote the angular frequency and
let ε0, µ0 > 0 denote the electric permittivity
and magnetic permeability in free space. We
define the wave number k > 0 in free space to be
k = ω

√
ε0µ0 > 0. Let the pair of incident fields

(Ei,H i) be entire solutions of time harmonic
Maxwell’s equation in homogeneous space, i.e.

curlEi − iωµ0H
i = 0 in R3,

curlH i + iωε0E
i = 0 in R3 .

We assume that the incident field is scattered by
a non-magnetic scattering object D, for which
we assume a constant electric permittivity ε1 ∈ C
with Re(ε1) < 0 and Im(ε1) > 0. These elec-
tric permittivites are observed in the study of
metallic scattering objects like silver and gold,
especially for wavelengths in the visible electro-
magnetic spectrum. We define the permittivity
distribution ε = ε1χD + ε0χR3\D and consider
the scattering problem in full space, which is to

find the total fields
(E,H) = (Ei +Es,H i +Hs) satisfying

curlE − iωµ0H = 0 in R3,

curlH + iωεE = 0 in R3 ,

together with the Silver-Müller radiation condi-
tion (SMR). The scattered field Es satisfies a
far field expansion, which reads

Es(x) =
ei k|x|

4π|x|
(
E∞(x̂) +O(|x|−1)

)

as |x| → ∞ uniformly with respect to all direc-
tions x̂ = x/|x| ∈ S2.
In this talk we focus on thin tubular scatter-
ing objects Dρ having an elliptical cross section
that possibly rotates around the center curve Γ.
Here, the parameter ρ > 0 represents the ra-
dius of the elliptical cross section. The space of
admissible parametrizations is denoted by Uad.
The rotation function is further denoted by θ.
In our work (see [3]) we establish an asymptotic
representation formula for electric fields scat-
tered by Dρ.

Theorem 1 For a thin tubular scatterer with
elliptical cross section with semiaxes lengths
a = ρã and b = ρb̃, the far field of Es

ρ satisfies

E∞ρ (x̂) = abk2π

∫

Γ
(εr − 1)e−ikx̂·y

(
(x̂× I3)× x̂

)
Mε
θ(y)Ei(y) ds(y) + o(|Dρ|)

as ρ→ 0. The matrix valued function
Mε
θ ∈ L2(Γ,C3×3) is the so-called electric polar-

ization tensor.

2 Maximizing electromagnetic chirality

We define the far field operator

(FDA)(x̂) =

∫

S2

E∞(x̂,d,A(d)) ds(d).

Electromagnetic chirality describes the interac-
tion of a scattering object D with fields of differ-
ent helicities. As shown in [2], helicity of either
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an incident Herglotz field Ei[A] or the corre-
sponding scattered field Es[A] can be charac-
terized by the assignment of the representative
field A ∈ L2

t (S
2,C3) to spaces V + or V − with

V + ⊕ V − = L2
t (S

2,C3) where

V ± = {A± CA : A ∈ L2
t (S

2,C3)}

and (CA)(θ) = iθ × A(θ) for θ ∈ S2. Using
orthogonal projections, it is possible to derive a
decomposition of the far field operator

FD = F++ + F+− + F−+ + F−−, (1)

where Fpq characterizes the helicity contribu-
tion of the p incident field to the q scattered
field for p, q ∈ {+,−}. For a thin scatterer Dρ

we employ theorem 1 to approximate the far
field operator. Introducing the operator

(TDρA)(x̂) := abk2π

∫

Γ
(εr − 1)e−ikx̂·y

(
(x̂× I3)× x̂

)
Mε
θ(y)Ei[A](y) ds(y)

consequently gives that FD = TDρ + o((kρ)2) as
ρ→ 0 and the term o((kρ)2) is such that
‖o((kρ)2)‖HS/(kρ)2 converges to zero. Here,
‖ · ‖HS denotes the Hilbert-Schmidt norm. We
define the nonlinear operator
Tρ : Uad × [0, 1]→ HS(L2

t (S
2,C3)) by

Tρ(Γ, θ) = TDρ , (2)

where Dρ is the thin tubular scatterer charac-
terized by the center curve Γ and the rotation
function θ. The operators Tρ(Γ, θ)pq for p, q ∈
{+,−} are defined analogously to Fpq and con-
situte a decomposition of Tρ, equally to (1).
These operators are now used to approximate
the relative chirality measure introduced in [4].
In our setting, this approximation is denoted by
J2 : Uad × [0, 1]→ [0, 1], with

J2 =

√
‖(σ++

j )− (σ−−j )‖2
`2

+ ‖(σ+−
j )− (σ−+

j )‖2
`2

‖Tρ‖HS
,

where (σpqj ) denote the singular values of Fpq.
The functional J2 takes the value 1 for a max-
imally em-chiral object and the value 0 for an
em-achiral object. Since the function J2 is not
smooth, we consider a smooth relaxation of J2,
denoted by JHS. Moreover, we introduce penalty
terms and regularization parameters, denoted
by Λ and α, respectively, in order to stabilize

Figure 1: Maximizing electromagnetic chirality
for a silver scatterer at 555THz.

the optimization functional. Thus, we define the
regularized functional
F (Γ, θ) = JHS(Γ, θ) − αΛ(Γ, θ), that we aim
to maximize with respect to the center curve
Γ and the rotation θ of the elliptical cross sec-
tion around Γ. For this purpose, we apply the
BFGS method to F . The far field operator ap-
proximation in (2) allows an explicit computa-
tion of the Fréchet derivative of F with respect
to Γ and θ, resulting in an efficient optimiza-
tion scheme. An example of such an optimiza-
tion can be found in Figure 1. The initial guess
on the left, a 4 turn helix with an elliptical
cross section, is iteratively deformed by the op-
timization scheme. The algorithm stops after 26
steps, returning the nano-structure in the right
plot of figure 1. This object has a compara-
tively large measure of em-chirality. This talk is
based on joint work with T. Arens, I. Fernandez-
Corbaton, R. Griesmaier and C. Rockstuhl.
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