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Maximizing the electromagnetic chirality for metallic nanowires in the visible spectrum
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Abstract

Electromagnetic chirality describes differences
in the interaction of scattering objects with elec-
tromagnetic fields of different helicity. If the
scattering behavior of an object with respect
to incident waves of one helicity cannot be re-
produced with incident fields of the opposite
helicity, then the object is said to be electro-
magnetically chiral (em-chiral), otherwise it is
called em-achiral. Em-chirality can be quanti-
fied by chirality measures that attain the value
0 for an em-achiral object and the value 1 for
a maximally em-chiral object. We investigate
a shape optimization problem, where the goal
is to construct thin metallic nanowires that ex-
hibit large measures of em-chirality at a given
frequency. We present a gradient based opti-
mization method, based on an asymptotic rep-
resentation formula for approximating scattered
fields due to thin metallic scattering objects.

Keywords: Electromagnetic chirality, shape op-
timization, asymptotic representation formula

1 Scattering from metallic wires

Let w > 0 denote the angular frequency and
let g, 0 > 0 denote the electric permittivity
and magnetic permeability in free space. We
define the wave number k& > 0 in free space to be
k = w\/gopo > 0. Let the pair of incident fields
(E',H") be entire solutions of time harmonic
Maxwell’s equation in homogeneous space, i.e.

curl B —iwpgH =0 in R,
curl H' + iwsoEi =0 inR3.

We assume that the incident field is scattered by
a non-magnetic scattering object D, for which
we assume a constant electric permittivity e; € C
with Re(e1) < 0 and Im(e;) > 0. These elec-
tric permittivites are observed in the study of
metallic scattering objects like silver and gold,
especially for wavelengths in the visible electro-
magnetic spectrum. We define the permittivity
distribution € = e1xp + €oXps\p and consider
the scattering problem in full space, which is to

find the total fields }
(E,H) = (E'+ E°, H" + H?) satisfying

in ]R3,

in R?,

curl E —iwpgH =0
curl H +iweE =0
together with the Silver-Miiller radiation condi-

tion (SMR). The scattered field E° satisfies a
far field expansion, which reads

elk\m\

E*(z)

(E>(@) + O(j=[™1))

- 47 ||

as || — oo uniformly with respect to all direc-
tions Z = z/|z| € S2.

In this talk we focus on thin tubular scatter-
ing objects D, having an elliptical cross section
that possibly rotates around the center curve I'.
Here, the parameter p > 0 represents the ra-
dius of the elliptical cross section. The space of
admissible parametrizations is denoted by Uyq.
The rotation function is further denoted by 6.
In our work (see [3]) we establish an asymptotic
representation formula for electric fields scat-
tered by D,.

Theorem 1 For a thin tubular scatterer with
elliptical cross section with semiazes lengths
a = pa and b= pb, the far field of E, satisfies

S\ 12 —ik@-
EX(x) = abk W/F(sr —1)e Y

(@ x I3) x )M (y) E'(y) ds(y) + o(| D)

as p — 0. The matriz valued function
M5 € LT, C3*3) is the so-called electric polar-
ization tensor.

2 Maximizing electromagnetic chirality

We define the far field operator

(FpA)(x) = E>(z,d,A(d)) ds(d).

S2
Electromagnetic chirality describes the interac-
tion of a scattering object D with fields of differ-
ent helicities. As shown in [2], helicity of either
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an incident Herglotz field E?[A] or the corre-
sponding scattered field E°[A] can be charac-
terized by the assignment of the representative
field A € L?(S?,C?) to spaces VT or V~ with
VoV = L2(S? C3) where

VE={A+CA : Ac L[5 C>)

and (CA)(0) = i6 x A(O) for 8 € S2. Using
orthogonal projections, it is possible to derive a
decomposition of the far field operator

Fp=F T+ F~+FT+F -, (1)

where FP¢ characterizes the helicity contribu-
tion of the p incident field to the ¢ scattered
field for p,q € {+,—}. For a thin scatterer D,
we employ theorem 1 to approximate the far
field operator. Introducing the operator

(Tb,A)(@) = abk’r /F () — 1) kv

(@ x I3) x Z)Mj(y) E'[A](y) ds(y)

consequently gives that Fp = Tp, + o((kp)?) as
p — 0 and the term o((kp)?) is such that
llo((kp)?)|lus/(kp)? converges to zero. Here,

|| - |lms denotes the Hilbert-Schmidt norm. We
define the nonlinear operator

T, : Usq x [0, 1] — HS(L2(S2,C?) by
Tp(ru 0) = TDpa (2)

where D, is the thin tubular scatterer charac-
terized by the center curve I' and the rotation
function 6. The operators T,(I", )7 for p,q €
{+, —} are defined analogously to FP¢ and con-
situte a decomposition of T),, equally to (1).
These operators are now used to approximate
the relative chirality measure introduced in [4].
In our setting, this approximation is denoted by
Jo 1 Uaq % [0,1] — [0, 1], with

G = @R + e ) = (0 DI

Jo
| Tpllns

where (afq) denote the singular values of FP9.
The functional Jy takes the value 1 for a max-
imally em-chiral object and the value 0 for an
em-achiral object. Since the function J3 is not
smooth, we consider a smooth relaxation of Jo,
denoted by Jus. Moreover, we introduce penalty
terms and regularization parameters, denoted
by A and «, respectively, in order to stabilize

¢ =26 (final result)

units in nm

¢ =0 (initial curve)

units in nm

0
Y300 w000

Figure 1: Maximizing electromagnetic chirality
for a silver scatterer at 555THz.

the optimization functional. Thus, we define the
regularized functional

FI,0) = Jus(T',0) — aA(T',0), that we aim
to maximize with respect to the center curve
I" and the rotation 8 of the elliptical cross sec-
tion around I'. For this purpose, we apply the
BFGS method to F'. The far field operator ap-
proximation in (2) allows an explicit computa-
tion of the Fréchet derivative of F' with respect
to I' and 0, resulting in an efficient optimiza-
tion scheme. An example of such an optimiza-
tion can be found in Figure 1. The initial guess
on the left, a 4 turn helix with an elliptical
cross section, is iteratively deformed by the op-
timization scheme. The algorithm stops after 26
steps, returning the nano-structure in the right
plot of figure 1. This object has a compara-
tively large measure of em-chirality. This talk is
based on joint work with T. Arens, I. Fernandez-
Corbaton, R. Griesmaier and C. Rockstuhl.
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