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Abstract

We consider here wave propagation problems
in bi-dimensional unbounded domains and, for
their numerical solution, we propose the one-
equation coupling of a Curvilinear Virtual El-
ement Method (CVEM) with a Boundary Ele-
ment Method (BEM). In particular, for the ap-
proximation in space, we consider decoupled ap-
proximation orders for the interior CVEM and
the collocation BEM. For the approximation in
time, we apply a time marching Crank-Nicolson
scheme in the interior domain with the Lubich
time convolution quadrature (CQ) formulas on
the boundary. Exploiting the high order flexi-
bility of the CVEM, the overall method allows
us to use a low order BEM to retrieve accurate
discrete solutions. Numerical tests show the ef-
fectiveness of the proposed approach.
Keywords: CVEM-BEM, one-equation coupling,
convolution quadrature formula

1 Introduction

Let Ω0 ⊂ R2 a bounded domain with Lipschitz
boundary Γ0. We consider the damped wave
equation in the unbounded domain Ωe := R2\Ω0

1

c2
üe(x; t) +αu̇e(x; t)−∆ue(x; t) = f(x; t) (1)

with proper initial data and a Dirichlet bound-
ary condition prescribed on Γ0, c and α be-
ing the speed propagation and the damping pa-
rameter. Among the most commonly used ap-
proaches to solve (1), the Boundary Element
Method turns out to be an appealing one, since
it reduces the problem dimension by one, re-
quiring only the discretization of the obstacle
boundary. Once the boundary density is re-
trieved, the solution of the original problem at
each point of the exterior domain is obtained by
a post-processing procedure, based on an accu-
rate computation of boundary integrals. How-

ever, this procedure may result not efficient, es-
pecially when the solution has to be evaluated
in a wide region surrounding the obstacle. As an
alternative approach, we define a finite compu-
tational domain, and we apply a coupling of an
interior domain method with a boundary one.
In literature, various coupling strategies have
been proposed and extensively studied, among
which we mention the Costabel-Han and the
Johnson-Nédélec. Here we choose the latter,
known also as the one-equation coupling, that,
not involving a boundary integral operator of
hypersingular type, is cheaper and easier to im-
plement.

2 The one-equation coupling

Aiming at determining the solution ue of (1)
in a bounded subregion of Ωe, we introduce an
artificial boundary Γ which defines a finite com-
putational domain Ω, bounded internally by Γ0

and externally by Γ. Reformulating the PDE in
the unbounded residual domain, in terms of a
boundary integral equation (BIE) on Γ, and tak-
ing into account compatibility and equilibrium
conditions, we reformulate the original problem
as the coupling of the variational formulation of
the wave equation in the interior domain, with
the BIE on Γ. This latter involves both u, re-
striction of ue to Ω, and its external normal
derivative λ := ∇u · n, and reads

1

2
u(x; t) + Vλ(x; t) + Ku(x; t) = 0

for (x; t) ∈ Γ× [0, T ], V and K being the single-
and double-layer integral operators associated
to the wave equation, respectively. The BIE is
discretized by means of a collocation BEM in
space and the BDF2 Lubich CQ formula in time.

3 Curvilinear Virtual Element Method

We discretize the weak formulation of (1), in the
interior domain, by applying a CVEM which, in
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the spirit of the Virtual Element Method, con-
sists in choosing conforming finite dimensional
subspaces of H1(Ω), whose “virtual” basis func-
tions are not explicitly known. However, using
only appropriate degrees of freedom, it is pos-
sible to compute an approximate version of the
bilinear forms associated with the weak formula-
tion. To avoid the approximation of the geome-
try in case of curvilinear obstacles, we consider a
curvilinear VEM to guarantee the optimal con-
vergence rate of the numerical method.

4 Decoupled approximation orders
We denote by k◦ and k∂ the approximation or-
ders of the CVEM and the BEM, respectively,
associated with the mesh diameters h◦ in Ω and
h∂ on Γ. Based on the analysis performed in
[2, 3] for the Helmholtz and Poisson problems,
we may conjecture that at each fixed time, the
error in the L2(Ω)-norm is bounded by

‖u− uh‖L2(Ω) = O
(
hk◦+1
◦

)
+O

(
hk∂+2
∂

)
+O

(
∆2

t

)
,

∆t being the time discretization parameter. The
numerical tests confirm the expected error bound.
We remark that the possibility of decoupling the
approximation orders allows us to use a high or-
der CVEM and a low order BEM. This turns out
to be a great advantage for the global scheme,
the accurate computation of the boundary inte-
grals being a well-known bottleneck of the BEM,
especially when the associated approximation
order increases.

Figure 1: Solution of problem (1)-(2) at T = 1.

5 Numerical results

We consider equation (1) with null initial con-
ditions and source term, c = 1, α = 0, and
Dirichlet datum

g(x; t) = t3e−t2 cos(x21 + 2x22), (2)

in the region outside the unitary disk centered at
the origin and, as artificial boundary, we choose
the cirlce of radius 2. In Figure 1 we show the
numerical solution obtained with orders k◦ =
2, k∂ = 1 in a mesh with 332,288 degrees of
freedom, at the final time T = 1, with ∆t =2.5e-
03. In Figure 2 we report the convergence rate
of the L2-norm error for a fixed ∆t with respect
to space refinements. The optimal expected rate
is reached for both choices of the discretization
parameters.
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Figure 2: L2-norm at T = 1, with fixed ∆t.
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