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Abstract

Full-waveform inversion (FWI) is a state-of-the-
art method for imaging the earth’s subsurface.
However, FWI is notorious for local-minimum
trapping, or “cycle skipping,” and thus requires
an accurate initial model ([2]). Cycle skipping is
caused by the nonconvex nature of the misfit op-
timization landscape in its typical least-squares
formulation. The Wasserstein-2 distance is con-
vex with respect to shifts and dilations, both of
which occur naturally in seismic data. There-
fore, we propose using this optimal transport
metric as our misfit for FWI. Previous work us-
ing optimal transport for source inversion, whose
applications include microseismic event detec-
tion and deformation mechanics in subduction
zones, has shown promise ([1]). However, this
work uses the acoustic wave equation, which is
less accurate than the elastic wave equation. In
this paper, we extend these results to elastic
source inversion and show that they translate
well to the elastic model.
Keywords: seismic imaging, optimal trans-
port, inverse problems

1 Introduction

FWI is formulated as a PDE-constrained opti-
mization problem with respect to a given misfit
functional. Given that time shifts and ampli-
tude dilations occur naturally in seismic data,
we would ideally use a misfit functional that is
convex with respect to these transformations.
The Wasserstein-2 distance, denoted W2, satis-
fies this property, whereas the industry standard
L2 misfit does not ([4]). W2(µ, ν) for probability
distributions µ, ν on X = Rn is given by

W 2
2 (µ, ν) := inf

T∈M

∫

X
|x− T (x)|2dµ(x) (1)

where

M := {T |∀B ∈ B(X), µ(T−1(B)) = ν(B)}

is the set of feasible transport maps ([3]). W2 is
defined between probability distributions, but

Figure 1: Comparison of optimization landscape
of W2 and L2 distances for elastic waves that
have been shifted away from origin according to
varying P and S-wave velocity differences.

seismic data are not probability distributions.
Thus, we must renormalize our seismic data via
some map R; we use positive/negative split-
ting renormalization as outlined in [4]. Figure 1
demonstrates that convexity of W2 under shift
is preserved after renormalization of a model
elastic wave with a Ricker wavelet source. Di-
rectly computing the L2 norm clearly results in
a nonconvex optimization landscape. Previous
work has applied optimal transport to velocity
and source inversion but has used the acoustic
wave equation as the forward model ([1], [5]). In
this paper, we apply optimal transport to seis-
mic source inversion but with the elastic wave
equation, a more complete and accurate forward
model. We exhibit that the promising results
from the acoustic model translate well to the
elastic model.

2 Problem Formulation

Our forward model is the isotropic elastic wave
equation over domain Ω = (a, b)×(c, d)×(0, T ).
Our Lamé parameters are given by λ(x) and
µ(x). The source signature of a Ricker wavelet
with a characteristic timescale σ and amplitude
A. The model parameter is the source location
s. That is, u = F(s) if and only if

ρü = (λ+ µ)∇(∇ · u) + µ∇2u+ fs

+∇λ(∇ · u) +∇µ · (∇u+ (∇u)T ) in Ω

u(z, x, 0) = 0

u satisfies Sommerfeld condition
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where

fs = ARσ(t)δ(x− s)

Rσ(t) :=

(
1−

(
t

σ

)2
)
e−

t2

2σ2 .

Given that W2 computation has linear cost in
1D and is expensive in higher dimensions, we
use the trace-by-trace W2 distance, as outlined
in [4]. The trace-by-trace W2 distance computes
the renormalized W2 distance between time se-
ries at each receiver location and then sums them.
Formally, we define an observation map O by

O(u)(x) := u(0, x, ·). (2)

Thus our full map from parameter space to ob-
servation space is given by

Ps := R [O [F(s)]] . (3)

Given observation time series {dr(t) : t ∈ (0, T )}Rr=1

at surface coordinates {xr}Rr=1, we seek a source
location s∗ such that

s∗ = argmin
s

R∑

r=1

W 2
2 (Ps(xr),R(dr)) .

3 Computational Results

In Figure 3, we compare the optimization land-
scape of our modified W2 distance and the L2

norm. Note that the W 2
2 landspace is much

smoother and has a unique global minimum.
This contrasts to the many spiky local minima
seen for the square of the L2 norm. Given an
inaccurate initial source location, we would ex-
pect convergence to the global minimum for W 2

2 ,
but we will likely see convergence to only a lo-
cal minimum for L2. In Figure 3, we directly
test this with an initial guess of (0.8, 0.5) with
data d = F((0.5, 0.5)) synthetically generated
at the center of the domain. We see convergence
to the global minimum for W2 in few iterations
and only convergence to a local minimum (that
is quite far away from the global minimum) for
L2. Our experiments support our hypothesis
that when applied to the elastic wave equation,
W2 has a smoother optimization landscape with
less likelihood of getting trapped in a local min-
imum.
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