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Abstract

We address the efficient finite element solution
of exterior acoustic problems with convex trun-
cated computational domains of general shape
surrounded by perfectly matched layers (PMLs).
In this contribution, we will present a PML im-
plementation that is versatile and automatic for
the end-user. It relies on a mesh extrusion,
a modification of the Jacobian matrix in the
element-wise integrals and a parameter-free ab-
sorbing function. Only the PML thickness must
be chosen. It will be validated and compared to
other implementations using 2D and 3D cases.
Keywords: Finite elements, Helmholtz equation,
Non-reflecting boundary condition, PML

1 Introduction

The PML is a popular absorbing boundary tech-
nique that combines accuracy, geometric flex-
ibility and computational efficiency. In order
to reduce the computational cost, it can be ad-
vantageous to minimize the size of the domain,
leading to regions with general shapes.

Conformal PML formulations can address
convex domains of general shape with smooth
boundaries [3,5]. However, they depend on geo-
metric parameters (e.g. principal curvatures and
principal directions of the border), which may
not be explicitly known if the geometry is com-
plicated or if only the mesh is available.

In this short paper, we present a comprehen-
sive implementation strategy, recently studied
in [2] and based on [1], for Helmholtz problems.
It is a specific implementation of the conformal
PML for cases with smooth borders, but it can
also be applied to cases with non-regular borders
in an empirical way. After a presentation of the
conformal PML, we present key aspects of our
implementation and a numerical illustration.

2 Conformal PML

Let us consider a convex computational domain
Ωdom with a regular exterior border Γ. The layer

Ωpml is generated by extruding Γ in the normal
direction n with a constant thickness.

To derive the PML equation, the Helmholtz
equation is written in a local curvilinear coor-
dinate system (ξ1, ξ2, ξ3) associated to Γ. For
each point x of the layer, the coordinate ξ1 is
the distance to the closest point p belonging to
Γ, and the coordinates (ξ2, ξ3) are provided by
a local parametrization of Γ at p. After, the
coordinate ξ1 is replaced with the complex co-
ordinate ξ̃1(ξ1) := ξ1−f(ξ1)/(ık), with f(ξ1) :=∫ ξ1
0 σ(ζ) dζ, where σ(ζ) is the so-called absorb-

ing function. See e.g. [3, 5].
By using standard techniques, we get the fol-

lowing variational formulation of the problem:
∣∣∣∣∣∣∣∣∣∣∣

Find u ∈ H1(Ω) such that, for all v ∈ H1(Ω),∫

Ωpml

[
(J−⊤

pml∇xu) · (J−⊤
pml∇xv)− k2uv

]
αpml dΩ

+

∫

Ωdom

[
∇xu · ∇xv − k2uv

]
dΩ =

∫

Ωdom

fv dΩ,

with αpml := det(Jpml) and the Jacobian matrix
associated to the complex stretch,

Jpml := I− 1

ık

(
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⊤+
∑
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κjf(ξ1)

1 + κjξ1
tjt

⊤
j

)
,

where {κj}j=2,3 are the principal curvatures and
{tj}j=2,3 are the principal directions of Γ.

3 PML implementation

The direct finite element implementation of the
conformal PML requires the knowledge of the
coordinate ξ1 (which is a distance function) and
the principal curvatures/directions of Γ at every
point of the layer. We propose an implementa-
tion that provides all the required data.

Mesh extrusion and interpolation
The mesh of the layer is generated by ex-

truding the mesh of the surface, Γh, along a di-
rection nh corresponding to the exterior normal.
An empirical rule is proposed in [2] to deal with
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polyhedral surfaces. During this step, the dis-
tance function rh, the direction nh and the po-
sition of the closest point ph are recorded at the
nodes of the extruded mesh. Then, these nodal
values are interpolated on every element of the
layer by using polynomial basis functions. The
interpolated fields verify xh = ph + rhnh every-
where, not only at the nodes.

Computation of element-wise integrals
The second key aspect of our approach is re-

lated to the computation of the element-wise in-
tegrals in the finite element matrix. For a given
element De of Ωpml, a typical integral reads
∫

De

(J−⊤
pml,h∇xΨA) · (J−⊤

pml,h∇xΨB) αpml,h dDe,

where ΨA and ΨB are global basis functions.
Using the mapping between the physical ele-
ment De and the reference element Dref, this
integral can be rewritten as

∫

Dref

(J−⊤∇uψa) · (J−⊤∇uψb) (det J) dDref,

where ψa and ψb are local basis functions that
depend on the reference coordinates (u1, u2, u3).
The Jacobian matrix J := JpmlJref contains both
the reference mapping and the complex stretch.
The expression of J can be simplified by con-
sidering that the stretched coordinate actually
is the interpolated distance function rh. Then,
the matrix J can be written explicitely as

J = Jref −
1

ık

[
(∂u1rh) σ(rh) nh ;

f(rh) ∂u2nh ; f(rh) ∂u3nh
]
.

This specific representation of the Jacobian ma-
trix is the main novelty of this work.

Remarks
If the border of the domain is smooth, this

approach is a specific implementation of the con-
formal PML with ξ1 ≈ rh. Otherwise, it is an
empirical approach that is rather good for edges
and corners with obtuse angles.

A simple alternative [4] corresponds to us-
ing J =

[
∂u1 x̃h ; ∂u2 x̃h ; ∂u3 x̃h

]
, where x̃h cor-

responds to the stretched interpolated position
vector. However, with this alternative, the func-
tion σ and f are interpolated, which introduce
spurious errors if they are not polynomial.

We use a hyperbolic absorbing coefficient,
σ(rh) = 1/(δ − rh), with the layer thickness δ.

It provides good accuracy without requiring the
tuning of free parameters, by contrast with poly-
nomial functions.

4 Numerical illustration

We consider the scattering of a plane wave by a
submarine. The border of the domain has been
generated automatically with a convex hull al-
gorithm. Simulations have been performed with
P2 elements and PML thicknesses with 1, 5 and
10 mesh cells. The results are very close. More
details and validation results are proposed in [2].

Figure 1: Mesh of the computational domain

Figure 2: Directivity pattern of the scattered field
for several PML thicknesses
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