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Abstract

We address the efficient finite element solution
of exterior acoustic problems with convex trun-
cated computational domains of general shape
surrounded by perfectly matched layers (PMLs).
In this contribution, we will present a PML im-
plementation that is versatile and automatic for
the end-user. It relies on a mesh extrusion,
a modification of the Jacobian matrix in the
element-wise integrals and a parameter-free ab-
sorbing function. Only the PML thickness must
be chosen. It will be validated and compared to
other implementations using 2D and 3D cases.
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1 Introduction

The PML is a popular absorbing boundary tech-
nique that combines accuracy, geometric flex-
ibility and computational efficiency. In order
to reduce the computational cost, it can be ad-
vantageous to minimize the size of the domain,
leading to regions with general shapes.

Conformal PML formulations can address
convex domains of general shape with smooth
boundaries [3,5]. However, they depend on geo-
metric parameters (e.g. principal curvatures and
principal directions of the border), which may
not be explicitly known if the geometry is com-
plicated or if only the mesh is available.

In this short paper, we present a comprehen-
sive implementation strategy, recently studied
in [2| and based on [1], for Helmholtz problems.
It is a specific implementation of the conformal
PML for cases with smooth borders, but it can
also be applied to cases with non-regular borders
in an empirical way. After a presentation of the
conformal PML, we present key aspects of our
implementation and a numerical illustration.

2 Conformal PML

Let us consider a convex computational domain
Qdom With a regular exterior border I'. The layer

Qpm is generated by extruding I' in the normal
direction n with a constant thickness.

To derive the PML equation, the Helmholtz
equation is written in a local curvilinear coor-
dinate system (&1, &2,&3) associated to I'. For
each point x of the layer, the coordinate &; is
the distance to the closest point p belonging to
I, and the coordinates (§2,&3) are provided by
a local parametrization of I' at p. After, the
coordinate &; is replaced with the complex co-
ordinate € (1) i= & — £(&)/(2k), with f(&1) =
Jo' o(¢) d¢, where () is the so-called absorb-
ing function. See e.g. [3,5].

By using standard techniques, we get the fol-
lowing variational formulation of the problem:

Find u € H'(Q) such that, for all v € H'(Q),

/Q [(JPHLV u) - (J;nTﬂVxU) —k‘Zuv} Qpmi dS2

pml

4 /Q [qu Vv — kqu} df) = fud,
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with apm) := det(Jpmi) and the Jacobian matrix
associated to the complex stretch,

Sl = ( (&) nn +foél& jj)

where {k;};—2 3 are the principal curvatures and
{t;}j=2,3 are the principal directions of I".

3 PML implementation

The direct finite element implementation of the
conformal PML requires the knowledge of the
coordinate &; (which is a distance function) and
the principal curvatures/directions of I" at every
point of the layer. We propose an implementa-
tion that provides all the required data.

Mesh extrusion and interpolation

The mesh of the layer is generated by ex-
truding the mesh of the surface, I'y,, along a di-
rection ny, corresponding to the exterior normal.
An empirical rule is proposed in [2] to deal with
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polyhedral surfaces. During this step, the dis-
tance function ry, the direction ny and the po-
sition of the closest point p;, are recorded at the
nodes of the extruded mesh. Then, these nodal
values are interpolated on every element of the
layer by using polynomial basis functions. The
interpolated fields verify x;, = p;, + rpny, every-
where, not only at the nodes.

Computation of element-wise integrals

The second key aspect of our approach is re-
lated to the computation of the element-wise in-
tegrals in the finite element matrix. For a given
element D, of (2,1, a typical integral reads

/ (J;rII,thE\IIA) ’ (J;£17thWB) Qpml,h dDe,

where W, and Wp are global basis functions.
Using the mapping between the physical ele-
ment D, and the reference element D,ef, this
integral can be rewritten as

/ (7T Vatbe) - (3~ TVthy) (det J) dDier,
Dot

where 1, and 1, are local basis functions that
depend on the reference coordinates (u1, ug, us).
The Jacobian matrix J := J,m1dref contains both
the reference mapping and the complex stretch.
The expression of J can be simplified by con-
sidering that the stretched coordinate actually
is the interpolated distance function rj,. Then,
the matrix J can be written explicitely as

J= Jref — %[ (8u1Th) O'(Th) ng ;
(k) Ouynn 5 f(rn) Ousniy }

This specific representation of the Jacobian ma-
trix is the main novelty of this work.

Remarks

If the border of the domain is smooth, this
approach is a specific implementation of the con-
formal PML with & =~ r,. Otherwise, it is an
empirical approach that is rather good for edges
and corners with obtuse angles.

A simple alternative [4] corresponds to us-
ing J = [8u1)~(h 5 OugXp 3 8u3ih], where xj, cor-
responds to the stretched interpolated position
vector. However, with this alternative, the func-
tion ¢ and f are interpolated, which introduce
spurious errors if they are not polynomial.

We use a hyperbolic absorbing coefficient,
o(ry) = 1/(6 — rp), with the layer thickness 0.

It provides good accuracy without requiring the
tuning of free parameters, by contrast with poly-
nomial functions.

4 Numerical illustration

We consider the scattering of a plane wave by a
submarine. The border of the domain has been
generated automatically with a convex hull al-
gorithm. Simulations have been performed with
P2 elements and PML thicknesses with 1, 5 and
10 mesh cells. The results are very close. More
details and validation results are proposed in |2].

Figure 2: Directivity pattern of the scattered field
for several PML thicknesses
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