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Abstract

The objective of this work is to propose and an-
alyze numerical schemes to solve data assimila-
tion problems by observers for wave-like hyper-
bolic systems. The efficiency of the considered
data assimilation strategy relies on the exponen-
tially stable character of the underlying system.
The aim of our work is therefore to propose a
discretization process that enables to preserve
the exponential stability at the discrete level
when using high-order finite element approxi-
mation. The main idea is to add to the wave
equation a stabilizing term which damps the os-
cillating components of the solutions (such as
spurious waves). This term is built from a dis-
crete multiplier analysis that gives us the expo-
nential stability of the semi-discrete problem at
any order without affecting the order of conver-
gence.
Keywords: Data assimilation, Control, Numeri-
cal discretisation

1 Statement of the problem

We aim at studying data assimilation strate-
gies for wave equation problems compatible with
their high-order discretization. In sequential ap-
proaches, also called observer approaches [2], we
aim at stabilizing exponentially fast – using the
available measurements – the error between the
observed trajectory initialized from an unknown
initial condition and the simulated trajectory
starting from a vanishing initial state.

Obtaining the exponential stabilization prop-
erties at the continuous level is widely studied –
see for example [2]. However, discretizing the
observer so that the stabilization property is
preserved at the discrete level is an additional
difficulty due to spurious high frequencies [1].
We propose, in the context of high order spectral
finite elements schemes in space [3] and leap-frog
discretisation in time, new remedies and associ-
ated analysis with a discretization - then - con-
trol strategy.

Let Ω = (0, 1) be the domain of propaga-
tion, we consider a scalar wave equation with
damping at the boundary x = 1,
{
∂tu+ ∂xv = 0 in Ω
∂tv + ∂xu = 0 in Ω

{
v(0, t) = 0
u(1, t) = γv(1, t)

with γ > 0. The initial data corresponds to the
unknown discrepancy between the observed tra-
jectory (that is assumed observed at x = 1) and
the reconstructed trajectory. By linearity, the
system above corresponds to the system of the
error between observed and reconstructed tra-
jectory, and the question is to prove that such
system – that is known to be exponentially sta-
ble – preserves its exponential stability property
after discretization.

2 Eigenvalues behavior investigations

As a key indicator of the behavior of the dis-
crete system we investigate the eigenvalues of
the generator of the corresponding semi-group:
we introduce

z =

(
u
v

)
, A =

(
0 −∂x
−∂x 0

)
,

whereA : L2(0, 1)×L2(0, 1)→ L2(0, 1)×L2(0, 1)
is an unbounded operator with domain D(A) ⊂
H1(0, 1) ×H1(0, 1) that takes into account the
boundary conditions. The consider dynamics
read

ż = Az, żh = Ahz,

where Ah ∈ L(Vh) is an approximation of the
operator A in a finite-dimensional space Vh that
is a subspace of D(A) obtained using spectral-
finite elements. Since we look for exponential
stability we aim at constructing approximations
for which the eigenvalues of Ah lies in the com-
plex plane not close to the imaginary axis.

In Figure 1 is represented the spectrum of
Ah obtained with a standard P1 approximation
(on both components u and v). We also rep-
resents the spectrum obtained when vanishing
(with h) viscosity is added – as a classical sta-
bilization strategy, see [1]. Only in the latter
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Figure 1: Spectrum of Ah (left) and Ah − h2Vh
(right) (Vh is a discrete Laplace operator on both
components). The black box highlights approxi-
mations of physical eigenvalues, the red one cor-
respond to parasitic eigenvalues.

case eigenvalues are well separated uniformly in
h from the imaginary axis. The problem persists
when using higher order finite elements and is
in fact stronger since the classical stabilization
strategy is less efficient, see Figure 2 and Figure
3 (left) in terms of quality of approximation.

Figure 2: Spectrum of Ah (left) and Ah − h2Vh
(right).

3 A high-order stabilizing term

We use the following variational formulation of
our problem : find zh(t) = (uh(t), vh(t)) ∈ Vh
solution to, for every (ũh, ṽh) ∈ Vh,




∮ 1

0
(∂tuhũh + ∂tvhṽh)dx

+

∫ 1

0
(∂xuhṽh + ∂xvhũh)dx

+ ṽh(1)(γvh(1)− uh(1))

+dh(uh, ũh) + dh(vh, ṽh) = 0,

where
∮ 1

0 denotes the use of the Gauss-Lobatto
quadrature formulae and dh the correcting bilin-
ear form used to obtained the desired stabiliza-
tion property. Denoting {xi} the set of vertices
of a partition of [0, 1], it is defined by

dh(uh, ũh) = Crh
2r
∑

i

∫ xi+1

xi

u
(r)
h ũ

(r)
h dx,

where Cr is a positive scalar depending only on
the order r of the finite-element method.

Denoting Ih the interpolation operator of con-
tinuous function into the finite element space,
we use an original discrete multiplier strategy:
choosing ũh = Ih(xvh) and ṽh = Ih(xuh) in the
formulation above we show that

‖zh(t)‖L2(Ω)×L2(Ω) ≤ C eσt‖zh(0)‖L2(Ω)×L2(Ω),

where C and σ are positive scalars independent
of h. This exponential stability property is con-
firm by an eigenvalue analysis (see Figure 3).
Note that our method extends the standard sta-
bilization strategy recovered here when r = 1.

Figure 3: Spectrum of Ah − hr+1Vh (left, r is
the order of the method) (r is the order of the
method) and Ah−Dh (right). Dh is the operator
constructed using the bilinear form dh for each
component.

We complete our analysis by proposing and
studying first an implicit then an explicit time
discretization that are shown to preserve – un-
der a time step condition – the efficiency, accu-
racy and exponential stability properties of the
semi-discrete problem.

Extension to 2d problems and other choices
of discretisation spaces will be discussed and nu-
merical results will be presented.
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