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Abstract

We discuss well-posedness and stability results
for nonlinear Maxwell equations, at an interface
between dispersive media, based on evolution-
ary operator equations. Within this framework
we propose a method for obtaining a justifica-
tion of a wave packet approximation on long
time intervals.
Keywords: Maxwell equations, evolutionary equa-
tions, dispersive waves

1 Maxwell system at an interface

Wave phenomena in nonlinear and interface op-
tics are explained using the macroscopic Maxwell
equations, where the material response (elec-
tric permittivity and magnetic permeability) is
frequency-dependent, i. e., non-instantaneous. In
physics, EM surface waves like surface plasmon
polaritons at an interface are documented for a
number of configurations. These are formal so-
lutions of the linear Maxwell system and given
by a plane-wave ansatz of the form

φ(x1) e
i(kx2−ωt), (1)

where φ : R → R6 is exponentially decaying,
and k ∈ R and ω ∈ C are related by a dispersion
relation ω(k). These evenescent linear modes
serve as building blocks for the approximation
of solutions of the nonlinear Cauchy problem.

2 Evolutionary operator equations

The initial value problem for the Maxwell sys-
tem is an evolutionary problem with memory
and can be formulated as an operator equation

∂tM(∂t)u+Au = F (u) + g (2)

(in the sense of [1]) in the weighted Hilbert space

L2
ϱ(R,H) = {u ∈ L2

loc(R,H) :

∥e−ϱtu(t)∥L2(dt) < ∞}.

where H = L2(Ω)6. Here A =
(

0 − curl
curl 0

)
is the

Maxwell operator, ∂t denotes the time deriva-
tive, and F is a (uniformly) Lipschitz contin-
uous map on L2

ϱ(R,H). The operator M(∂t)
is called a linear material law and is related
through the unitary Fourier-Laplace transform
Lϱ : L2

ϱ(R,H) → L2
0(R,H) to an analytic map

M : CRe>ϱ0 → B(H,H) via M(∂t) = L∗
ϱM(z)Lϱ.

The well-posedness of the (linear) problem, as
well as properties like exponential stability, fol-
low from (accretivity) conditions of the map z 7→
M(z), see [2, 3].
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Figure 1: Schematic depiction of the electric
field of a surface wave at the planar interface
Γ between two media Ω+ and Ω− in R3.

3 Approximation of surface waves

Assume the setting in Figure 1 with Ω = Ω+ ⊔
Γ ⊔Ω−, let H = L2(Ω)6 and consider the linear
material law

M(z) = M0 +
α±

z
+

N∑

j=1

β±
j

z + γ±j
,

on H, where α± > 0, β±, γ± ≥ 0 and M0 is
symmetric and positive definite. There exists
ν0 > 0 such that Re z > −ν0 =⇒ Re zM(z) ≥
c holds for some c > 0. Thus, M satisfies the
condition of exponential stability of the linear
system (∂tM(∂t) + A)u = g from [3], i. e., the
solution operator (∂tM(∂t) + A)−1 is bounded
and causal on L2

ϱ(R,H) for large ϱ > 0, and, for
small ν < ν0, maps L2

−ν(R,H) into itself. The
question whether exponential stability can be
expected also for the nonlinear system (2) can
be answered in part by imposing local Lipschitz
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continuity of F (with small Lipschitz constant
on small sets) in L2

−ν(R,H) and using a fixed-
point argument on a small ball.

Now let Φk for fixed k denote a linear mode
as in (1). We model a wave packet propagating
in x2-direction by the multiple-scale ansatz

uε(t, x) = ε a(ε2t, ε(x2 − cgt), ε
2x3)Φk(t, x),

where 0 < ε ≪ 1 is a small parameter and a is a
complex-valued amplitude. From (2) we obtain
an equation for the error R = u−uε of a similar
form,

(∂tMε(∂t) +A)R+Res(uε) = Fε(R) + g̃, (3)

where Res(uε) = (∂tM(∂t)+A)uε−F (uε), with
the linear material law Mε depending on uε, and
where Fε is nonlinear. Our aim here is to ob-
tain a small global solution of (3) by applying
the previous argument, which in turn justifies a
long-time approximation of solutions of the ini-
tial Maxwell system (2). We give an outline of
the conditions needed.
(a) Exponential stability of the linearized sys-
tem. The necessary condition can be (for small
ε) inherited from the material law M .
(b) Local Lipschitz-continuity of Fε in the space
L2
−ν(R,H) with small Lipschitz constant. An

example can be provided by a fully nonlocal
model.
(c) Smallness of the residual, Res(uε) = o(ε)
in L2

−ν(R,H). Expanding into powers of ε, for-
mally Res(uε) = O(ε4) can be achieved through
refinement of the ansatz, and demanding that a
is a solution of an amplitude equation of com-
plex Ginzburg-Landau type. Rigorous estimates
can be obtained by imposing higher regularity
on a, yielding Res(uε) = O(ε3/2) in L2

−ν(R,H).
A fixed-point argument in L2

−ν(R,H) finally
yields small solutions R of (3) for small data g̃.

4 Future work

Electro-magnetic surface waves are often treated
in the non-magnetic setting, where the magnetic
permeability is constant. In this case the linear
material law does not meet the requirements for
exponential stability. Still, similar results can be
obtained for the Maxwell system on a bounded
domain [4].
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