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Abstract

Starting from various variational formulations
of compressible viscous flows, linear and weakly
nonlinear equations of acoustic wave propaga-
tion are derived and analysed in terms of ad-
ditional terms compared to the classical wave
equations. On the one hand, the focus is on ex-
tensions of the classical theory in the direction of
viscous flows beyond the local thermodynamic
disequilibrium and on small scales up to the lim-
its of the continuum hypothesis; on the other
hand, relativistic flows are considered which ap-
pear on very large scales. For the latter, the
modelling of viscosity in accordance with the
causality principle is still a subject of current
debates, so that the analysis of acoustic wave
propagation can make a valuable contribution
to this issue. Keywords: Variational calcu-
lus, discontinuous Lagrangian, non-equilibrium
Thermodynamics, weakly nonlinear wave equa-
tion, causality

1 Variational principles for fluid flow

The formulation of physical theories with vari-
ational principles enables a deeper understand-
ing of the physical system in many respects. It
can equally serve as a basis for the development
of efficient solution methods. Two different ap-
proaches for fluid flow are considered below.

1.1 Clebsch potential approach

For compressible viscous flow without thermal
conductivity, [1] proposed the Lagrangian:
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where e = e (ϱ, s) is the specific inner energy of
the fluid depending on the mass density ϱ and
s = cp0 ln (χ̄χ/cp0T0) the specific entropy, given

in terms of the complex thermal excitation χ [2],
with temperature T0, mass density ϱ0 and spe-
cific heat cp0 as reference quantities. u⃗ denotes
the velocity field, Dt = ∂/∂t+ u⃗ ·∇ the material
time derivative, and D :R the contraction of the
shear rate tensor D with the friction tensor R,
taking viscosity into account.

Two Striking features are the discontinuity
due to the logarithmic term, ln

√
χ̄/χ, and the

additional parameter ω0, both being related to
phenomena away from thermodynamic equilib-
rium and beyond the continuum hypothesis, in
particular Brownian molecular motion. In this
context, 2π/ω0 can be interpreted as a thermo-
dynamic relaxation time.

The occurrence of the Clebsch variables Φ,
α and β as fundamental fields is due to the re-
quired Galilei invariance of the Lagrangian [1].

1.2 Tensor potential approach

If one demands Lorentz invariance in place of
Galilei invariance, the following proposal for a
Lagrangian, motivated by analogy to Maxwell’s
theory, turns out to be suitable [3]:
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with n the particle density, s the specific en-
tropy, uα the 4-velocity, χ a Lagrange multiplier,
Φ a scalar potential and āαβ a traceless symmet-
ric tensor potential. Again e = e(n, s) is the spe-
cific internal energy, p = n2∂e/∂n the pressure
and Rαβ the friction tensor taking viscosity and
heat conduction into account. Both e and Rαβ

depend on the constitutive relationships chosen
to underpin the fluid model. Einstein’s summa-
tion convention is used consecutively.
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2 Derivation of weakly nonlinear acous-
tic models

Starting from a theory of fluid flow, weakly non-
linear acoustic models are obtained following a
set procedure. Usually the first step is the com-
putation of the respective Euler-Lagrange equa-
tions from the given Lagrangian, followed by
manipulations leading to the equations of mo-
tion. The next steps refer to the case of classi-
cal flows considered in Sec. 1.1, but can also be
applied to the relativistic case shown in Sec. 1.2
after necessary adaptations. As state equation
for the pressure is assumed:
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with small-signal sound speed a0 and the non-
linearity parameter B/A of the respective fluid.
Furthermore, sound waves are regarded as irro-
tational, ∇× u⃗ = 0⃗, implying:

u⃗ = ∇Φ . (4)

On introducing the condensation ε := ln (ϱ/ϱ0)
with equilibrium mass density ϱ0, Taylor expan-
sion w.r.t. ε and Φ up to terms of quadratic or-
der while considering friction terms only in lin-
ear order, the set of equations can be reduced
to one equation only for the potential [4]:
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with ν̄ the diffusivity of sound over mass den-
sity. Eq. (5) is a generalisation of Kuznetsov’s
equation with an additional term due to ther-
modynamic non-equilibrium, the effect of which
becomes visible in the dispersion relation [4]:
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resulting from the respective linearised equation.
According to Fig. 1, the attenuation coefficient
ℑk (ω) is smaller compared to the classical one.

3 Conclusions and perspectives

Deriving equations for acoustic wave propaga-
tion from unconventional fluid flow theories pro-
vides an excellent test scenario of such theories:
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Figure 1: Attenuation coefficient ℑk (ω), plot-
ted against angular frequency for the special
choice ω0 = 3a20/ν̄ (blue). For comparison, the
respective relationship following from the clas-
sical theory (ω0 → ∞) is shown (green).

while in case of the Lagrangian (1) thermody-
namic non-equilibrium effects are identified as
deviations from the classical theory, an analogue
treatment of the relativistic Lagrangian (2) may
help to test different constitutive models for the
friction tensor Rαβ in terms of causality. Also
the role of potentials, for example the tensor po-
tential aαβ , and additional degrees of freedom
such as the phase of the complex field χ, could
be better understood via such models.

Another promising path could be the direct
application of the procedure depicted in Sec. 2
to the Lagrangian density in order to formulate
acoustic models by variational principles.
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