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Abstract

We consider the solution of a transmission prob-
lem at a thin layer interface of thickness ¢ > 0
in a two dimensional homogeneous viscoelastic
medium. A multi-scale expansion for that solu-
tion as € tends to 0 enables to replace the thin
layer with a generalized impedance boundary
condition (GIBC) [3,5]. This boundary condi-
tion involves a new second order surface sym-
metric operator with mixed regularity proper-
ties on tangential and normal components. Ex-
tending previous investigation for the Laplace
equation case [2], the unique identification of
the impedance parameters from measured data
produced by the scattering of three linearly in-
dependent incident plane waves is established.

Keywords: linear viscoelasticity, thin layers, gen-
eralized impedance boundary conditions, inverse
boundary value problem

1 Thin layer approximations

Let consider a simply connected bounded do-
main Q in R?, d = 2,3, with a closed orientable
boundary I', as smooth as we need, representing
a viscoelastic particle 2 coated by a thin layer
denoted €25, with constant thickness € > 0 and
different material properties as below.
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With a time-harmonic incident wave imping-
ing upon I, the total wave is the solution of

a transmission problem governed by the Navier
equation in Q¢ and €2, with complex Lamé
parameters characterized by Re(A, ) > 0 and
Im(wA,wp) < 0. The continuity of the solution
across the external boundary I' is described by

the following boundary conditions on I
t j int
u:$ + u’L'I’LC — uz_n
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where Tu = [AVu]n. This PDE system may
be augmented by either a Dirichlet (u = 0)
or a Neumann (Tu? = 0) boundary condition
on the internal boundary I'*. In this context,
the use of boundary and finite elements meth-
ods fails since some numerical instabilities arise
due to different mesh scaling inside and outside
the thin layer. To avoid the phenomenon, we
approximate the original model by a new exte-
rior boundary value problem with GIBCs.

In the first part of the talk, we present the
asymptotic analysis [3,5] leading to an approxi-
mate solution with error estimates up to O(g?).
The GIBC involves a new nonnegative symmet-
ric second order differential operator whose map-
ping properties enable the extension of previous
investigation [2| to linear viscoelasticity when
d = 2. The regularity properties of the approx-
imate solution are summarized in Section 2.

2 Regularity of the approximate solution

Let consider incident plane waves defined for a
given unit direction d and polarization p by
uznc(w) — eiﬁsz-ddl_(p . dJ_) + ﬁempz-dd(p . d)
The approximate problem we consider can
be formulated as follows: Given an incident plane
wave "¢ which is assumed to solve the Navier
equations in the absence of any scatterer, find
the scattered field u satisfying

pAu + (A + p)Vdive + pw?u =0  in QF,
where the positive constant p is the density, and
the impedance-like boundary condition on I"

Tu + iw{au — divp (8(divru)l;) } =g,
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with

g= —Tumc—iw{aumc—din (6(divrumc)l,.)}.

where 7 = nt = T(

—ng,n1), Ir = 7 ® 7 and
divpu = 7 - (Osu) where Js is the arc lentgh
derivative. The impedance parameters a € ¢1(T')
and 3 € €*(T") are complex functions with non
negative real parts. Moreover, the scattered field
has to satisfy the Kupradze radiation condition
rewritten in the form

lim  |z|7|T(0, #)u — iKyu| =0,

|z| =400

which has to be satisfied uniformly for all uni-

tary directions & = ﬁ and where

Ko = kp( A+ 2p)L; + roplz,

512, = w?p/(A + 2u) and k2 = w?p/u are the
square P- and S-wave numbers associated to
longitudinal and transverse wave propagation,

respectively, such that if Im(\, ) = 0 then x, =

wm and kg = w\/g, or else Im(kp, kg) > 0.

Lemma 1 The surface differential operator
divp ((divy - )Ir) is bounded from H%(F) to

V(D) = H»*(T) @ HE(T)

ol

where H, (') = {p € H’%(F); n-p =0}
1
and Hp (T') := {@EH%(F); T =0}

Theorem 2 (Ezistence) Assume that |5 > 0
and pw? is not a Dirichlet eigenvalue of the Navier
operator —A*. Then for each g € V_%(F), the
generalized impedance scattering problem admits

one and only one solution in H3 (Q°).

3 An inverse boundary value problem

In the second part of this talk, we present unique-
ness results for the inverse problem of identify-
ing the impedance functions o and 3, when the
shape I' is known, from a finite number of far
field patterns defined by ©™ = u3® +u,° where

u(o)=lal (el @) @)+ 0L ) )
uniformly in all directions & = é—‘ The injectiv-
ity of the map o — 4 obtained for the classical
impedance acoustic problem in [2, Proposition
1] extends to linear (visco)elasticity as is. The
case B # 0 is more involved.

For j = 1,2,3, we set u}” = u; + ué”c We
introduce the Wronskian associated to the tan-
gential components of the linear system

{ xjult + o = 0

VOl + Dt = 0,

given by

Wik = (ué-"t 1) (divpul) — (ui?- T)(dinu?’t).
Hypothesis H1. The boundary curve I is such
that given three linearly independent incident
plane waves, the tangential components of the
corresponding three total fields are linearly in-
dependent on I' too, namely for 5,k =1,2,3 we
have W5, # 0.

We prove the following results.

Theorem 3 For a given shape I', under Hy-
pothesis H1, three far field patterns correspond-
ing to the scattering of three incident plane waves,
with linearly independent couples of directions
and polarizations (dj,pj)j:LQ’g, uniquely deter-
mine the impedance functions o and .
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