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Abstract

We consider the solution of a transmission prob-
lem at a thin layer interface of thickness ε > 0
in a two dimensional homogeneous viscoelastic
medium. A multi-scale expansion for that solu-
tion as ε tends to 0 enables to replace the thin
layer with a generalized impedance boundary
condition (GIBC) [3, 5]. This boundary condi-
tion involves a new second order surface sym-
metric operator with mixed regularity proper-
ties on tangential and normal components. Ex-
tending previous investigation for the Laplace
equation case [2], the unique identi�cation of
the impedance parameters from measured data
produced by the scattering of three linearly in-
dependent incident plane waves is established.

Keywords: linear viscoelasticity, thin layers, gen-
eralized impedance boundary conditions, inverse
boundary value problem

1 Thin layer approximations

Let consider a simply connected bounded do-
main Ω in Rd, d = 2, 3, with a closed orientable
boundary Γ, as smooth as we need, representing
a viscoelastic particle Ωε coated by a thin layer
denoted Ωε

int with constant thickness ε > 0 and
di�erent material properties as below.

Ωε
int

In Ωext : u
ext
ε (x)e−iωt

div(A∇uext
ε ) + ρω2uext

ε = 0
Aξ = λTrace[ξ]Id + µ(ξ + Tξ)

Γ
Γε

n

ε

uinc(x) e−iωt

Ωε

uint(x)e−iωt

div(Aint∇uint
ε ) + ρintω

2uint
ε = 0

Aintξ = λintTrace[ξ]Id + µint(ξ + Tξ)

With a time-harmonic incident wave imping-
ing upon Γ, the total wave is the solution of

a transmission problem governed by the Navier
equation in Ωext and Ωε

int with complex Lamé
parameters characterized by Re(λ, µ) > 0 and
Im(ωλ, ωµ) ≤ 0. The continuity of the solution
across the external boundary Γ is described by
the following boundary conditions on Γ

uext
ε + uinc = uint

ε

T (uext
ε + uinc) = Tuint

ε

where Tu = [A∇u]n. This PDE system may
be augmented by either a Dirichlet (uint

ε = 0)
or a Neumann (Tuint

ε = 0) boundary condition
on the internal boundary Γε. In this context,
the use of boundary and �nite elements meth-
ods fails since some numerical instabilities arise
due to di�erent mesh scaling inside and outside
the thin layer. To avoid the phenomenon, we
approximate the original model by a new exte-
rior boundary value problem with GIBCs.

In the �rst part of the talk, we present the
asymptotic analysis [3,5] leading to an approxi-
mate solution with error estimates up to O(ε2).
The GIBC involves a new nonnegative symmet-
ric second order di�erential operator whose map-
ping properties enable the extension of previous
investigation [2] to linear viscoelasticity when
d = 2. The regularity properties of the approx-
imate solution are summarized in Section 2.

2 Regularity of the approximate solution

Let consider incident plane waves de�ned for a
given unit direction d and polarization p by

uinc(x) = eiκsx·dd⊥(p · d⊥) + 1
λ+2µe

iκpx·dd(p · d).
The approximate problem we consider can

be formulated as follows: Given an incident plane
wave uinc which is assumed to solve the Navier
equations in the absence of any scatterer, �nd
the scattered �eld u satisfying

µ∆u+ (λ+ µ)∇divu+ ρω2u = 0 in Ωc,

where the positive constant ρ is the density, and
the impedance-like boundary condition on Γ

Tu+ iω
{
αu− divΓ (β(divΓu)Iτ )

}
= g,

Suggested members of the Scienti�c Committee:

Fioralba Cakoni, Houssem Haddar



WAVES 2022, Palaiseau, France 2

with

g = −Tuinc−iω
{
αuinc−divΓ

(
β(divΓu

inc)Iτ
)}

.

where τ = n⊥ = T(−n2, n1), Iτ = τ ⊗ τ and
divΓu = τ · (∂su) where ∂s is the arc lentgh
derivative. The impedance parameters α ∈ C 1(Γ)
and β ∈ C 2(Γ) are complex functions with non
negative real parts. Moreover, the scattered �eld
has to satisfy the Kupradze radiation condition
rewritten in the form

lim
|x|→+∞

|x| 12
∣∣T (∂, x̂)u− iKωu

∣∣ = 0,

which has to be satis�ed uniformly for all uni-
tary directions x̂ = x

|x| and where

Kω = κp(λ+ 2µ)Ix̂ + κsµIx̂⊥ ,

κ2p = ω2ρ/(λ + 2µ) and κ2s = ω2ρ/µ are the
square P - and S-wave numbers associated to
longitudinal and transverse wave propagation,
respectively, such that if Im(λ, µ) = 0 then κp =

ω
√

ρ
λ+2µ and κs = ω

√
ρ
µ , or else Im(κp, κs) > 0.

Lemma 1 The surface di�erential operator

divΓ
(
(divΓ · )Iτ

)
is bounded from H

3
2 (Γ) to

V − 1
2 (Γ) := H

− 1
2

τ (Γ)⊕H
1
2
n (Γ)

where H
− 1

2
τ (Γ) := {φ ∈ H− 1

2 (Γ) ; n · φ = 0}
and H

1
2
n (Γ) := {φ ∈ H

1
2 (Γ) ; τ · φ = 0}.

Theorem 2 (Existence) Assume that |β| > 0
and ρω2 is not a Dirichlet eigenvalue of the Navier

operator −∆∗. Then for each g ∈ V − 1
2 (Γ), the

generalized impedance scattering problem admits

one and only one solution in H2
loc(Ω

c).

3 An inverse boundary value problem

In the second part of this talk, we present unique-
ness results for the inverse problem of identify-
ing the impedance functions α and β, when the
shape Γ is known, from a �nite number of far
�eld patterns de�ned by u∞ = u∞

s +u∞
p where

u(x)= |x|− 1
2

(
eiκs|x|u∞

s (x̂)+ eiκp|x|u∞
p (x̂)+O(

1

|x| )
)
,

uniformly in all directions x̂ = x
|x| . The injectiv-

ity of the map α 7→ u∞ obtained for the classical
impedance acoustic problem in [2, Proposition
1] extends to linear (visco)elasticity as is. The
case β ̸= 0 is more involved.

For j = 1, 2, 3, we set utot
j = uj + uinc

j . We
introduce the Wronskian associated to the tan-
gential components of the linear system

{
χju

tot
j + χku

tot
k = 0

χj∂su
tot
j + χk∂su

tot
k = 0,

given by

Wj,k = (utot
j ·τ )(divΓutot

k )− (utot
k ·τ )(divΓutot

j ).

Hypothesis H1. The boundary curve Γ is such
that given three linearly independent incident
plane waves, the tangential components of the
corresponding three total �elds are linearly in-
dependent on Γ too, namely for j, k = 1, 2, 3 we
have Wj,k ̸= 0.

We prove the following results.

Theorem 3 For a given shape Γ, under Hy-

pothesis H1, three far �eld patterns correspond-

ing to the scattering of three incident plane waves,

with linearly independent couples of directions

and polarizations (dj ,pj)j=1,2,3, uniquely deter-

mine the impedance functions α and β.
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