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Abstract

We study acoustic transmission problems in two

dimensions with a bounded inhomogeneity. By

means of defining reference constant coefficients,

a representation formula for the exterior and in-

terior domains is derived. The latter contains

a volume integral operator, related to the one

in the Lippmann-Schwinger equation. Follow-

ing the approach of first and second-kind single-

trace formulations (STF), a block operator is

obtained and discretized. Numerical experiments
confirm the convergence of the method and show

its potential for high-contrast problems and scat-
terers with small inhomogeneities.
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1 Introduction

We are interested in solving the acoustic wave
transmission problem in presence of an inho-
mogeneous medium of compact support 2 C
R? with Lipschitz boundary I' := 9€2. Material
properties are given by functions a : R? — R
and  : R? — C where

a(x) =1, k(x) =Ko € C (1)

for x € R?\ Q. The equation governing the prob-
lem of finding the total wave 4" := u + u'™ in

the whole space is
—div(a(x)Vu™(x)) — r(x)%u'l(x) =0, (2)

for x € R2, where u is the scattered field that
satisfies radiation conditions

and u™® corresponds to an incident field that
satisfies

—Ad(x) — k() =0, (4)
for x € R2.

2 Volume Integral Equations

We can rewrite (2) as

— AUt — g2utt = div(aVut) + putt,  (5)
where a(x) := a(x) — 1, B(x) := k(x)? — K.
The right-hand side of (5) is now a compactly
supported function. Let Ny denote the New-
ton potential for the Helmholtz equation with
wavenumber kg € C. It is possible to obtain
from (5) the following integral equation, typi-
cally known as the Lippmann-Schwinger equa-
tion

u'©® — divNg(aVu'") — No(Bu'°t) = u™, (6)

where u*°t € H1(Q). Fredholmness of equation
(6) has been studied in [2,4], with remarkable
limitations for the case a € C(f) instead of
CHRY).

3 Single-Trace Formulations

If we focus on the constant coeflicients case, a
useful approach to solve transmission problems
requires boundary integral equations. Based on
a representation formula for the interior and ex-
terior domains

u = Sl(a’;u) - Dl(’y_u)a n Q?
u = —So(0fu)+ Do(vtu), in R\,

where v+, 9F denote exterior/interior Dirichlet
and Neumann trace operators, S; and D; are
the layer potentials for the Helmholtz equation
with wavenumber x;,7 = 0,1. By taking traces
on the representation formula, we obtain the fol-
lowing identities
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with A; the Calderén operator with x4, j = 0, 1.
By enforcing transmission conditions in (7), we

(7)
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obtain
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First-kind STF is obtained by subtracting the
expressions in (8):

oty (30 = (). ©

n

Second-kind STF is obtained by adding them:

(14—Ao—-A1)<g_Z> - (;Z;;). (10)

n
The appropriate functional setting for both equa-
tions has been previously studied in [1, 3].

4 Coupled STF-VIE

In the presence of a compactly supported source
f in the right-hand side of the Helmholtz equa-
tion, the representation formula reads

w=51(0,u) — Di(y"u) + Ni(f), (1)

for x € ). We define reference coefficients

1 / 1
a1 := = [ a(x)dsx, k1 1= /n(x)dsx.
IT| J T J

(12)
This definition reduces the problem to the con-
stant coefficient case of Section 3 when a and &
are constant functions. Following the approach
from the STF and denoting

Au = Ny (div (a1 Vu) + pru),

where a1 (x) := a(x) —a1, Bi(x) = r(x)*— kK3,

we can derive an extended version of the first-

kind STF

1 % 7 u Yt
M= AoM + /4 Op A Tu | = | Opue
-D; 5 |[I-A u 0

(13)

in HY/2(I') x H=Y2(I") x H'(), where

10
M = <0 a> '
Similarly, an extended version of the second-
kind STF can be derived.
These new formulations have some properties

that make them desirable to be studied and com-
pared with existing alternatives. We discuss:

)

(a) Well-posedness of the continuous and dis-
crete formulations.

(b) Robustness of the formulation.
(c¢) Limit cases: boundary integral equations.

(d) Conditioning of the resulting matrix.

5 Numerical Experiments

Several numerical experiments illustrate the ca-
pabilities of our proposed formulations. We dis-

cretize with low-order finite elements on the bound-

ary and in the domain. We study errors in the
L?(Q) and H'() norms.
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Figure 1: Scattering by a disk.
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