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Abstract

We propose a general framework for solving
probabilistic wave inversion with applications in
dispersion-based ultrasound vibrometry. Bayes-
ian methods, while attractive, are often unable
to handle the lack of a likelihood function due to
the presence of nonlinear operators in the model.
We adopt a loss-based framework [1] to estimate
the parameter and summarize our confidence
through Gibbs posteriors. Gibbs posteriors are
derived as a solution to the variational problem
on the space of distributional estimators of the
parameter. We develop a cross-validation strat-
egy that allows us to draw samples from the
Gibbs posterior, tune the free parameter, and
make pairwise comparisons between many mod-
els for practical inversion workflow. We sup-
port the merits of our method through simu-
lated dispersion-based wave inversions that arise
in the characterization of artertial vessels using
ultrasound vibrometry.
Keywords: Uncertainty quantification, inverse
problems, wave inversion, stochastic inversion

1 Introduction

The majority of Bayesian methods for inverse
problems rely on an exact noise model, typi-
cally assumed to be i.i.d. Gaussian, to per-
form inference. It is desirable to extend such
inference to more general settings where a noise
model is unavailable or modeling the data gen-
erating mechanism is challenging. For instance,
in arterial ultrasound vibrometry [2], space-time
data is transformed to dispersion curves in the
frequency domain through nonlinear operations.
Then, these curves are used to invert for elas-
tic or viscoelastic parameters. Even if the noise
generating mechanisms are known in the space-
time data, postulating closed-form likelihoods
using dispersion curves becomes a very difficult
(often impossible) task. The Gibbs posterior
provides a way to update belief distributions in

a general setting without the need of an explicit
likelihood function [1]. Instead, the Gibbs pos-
terior is applicable where the unknown param-
eters are only connected to the data through a
loss function. Our contributions are: 1) the de-
velopment of a principled approach to calibrat-
ing a Gibbs posterior that generalizes the Bayes
posterior, and 2) the application of this frame-
work to the inversion of geometric and material
parameters in waveguides using dispersion data.

2 Incorporating Gibbs Posteriors to In-
version

Our interest is in solving an inverse problem for
finite-dimensional parameter θ ∈ Θ ⊂ Rp. Sup-
pose we define a forward model through the fol-
lowing equation:

M(F(θ), θ) = 0. (1)

M can be thought of as a PDE for an elastic
medium, which implicitly defines the forward
operator F that maps θ to a solution field of
PDE. In practice, we solve the discretized equa-
tion model M̂ and compute a discretized solu-
tion field, F̂ : Θ → RD × RT . We assume ob-
serving an n-ensemble model (possibly n > 1)
contaminated with an i.i.d. noise as

xi(u, t) = F̂(θ) + ϵi, ϵi ∼ Pϵ, i = 1, . . . , n. (2)

We consider waveguide problems in the frequency
domain. In this context, space-time states are
transformed to dispersion curves in the frequency
domain. Thus, we have the following observa-
tion model in Rd:

yi(ω) = Ĝ(F̂(θ) + ϵi). (3)

where Ĝ is a nonlinear operator that maps space-
time data to dispersion curves. We notice that
the pushforward through Ĝ complicates the sim-
ple linear noise model in 2.

The abstract model (3) usually has a non-
linear, non-smooth form, which leads to an in-
tractable likelihood of the sample dispersion curves
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Figure 1: Posterior sample draws of shear mod-
ulus (G0) and wall thickness learned from syn-
thetic data against the truth (red).

and a challenge to Bayesian methods. We in-
stead assume an access to a loss function l :
Θ × Rd → R quantifying discrepancy between
the exact solution field Fd(θ) and noisy samples
yi’s. Then, we posit the following variational
problem on the space of probability distribu-
tions for θ [1]:

ρ̂(dθ) = argminρ≪ρ0L(ρ), (4)

L(ρ) = W
n∑

i=1

∫
l(θ, yi)ρ(dθ) +DKL(ρ||ρ0).

(5)

The variational framework naturally extends the
Tikhonov regularization in linear inverse prob-
lems, with W playing the role of a regularization
parameter. The solution of the problem is the
following Gibbs posterior for θ:

ρ̂(dθ) ≡ exp(−W
∑n

i=1 l(θ, yi))ρ0(dθ)∫
Θ exp(−W

∑n
i=1 l(θ, yi))ρ0(dθ)

. (6)

When a true likelihood model can be exactly
specified, we can match W and loss function to
that of a Bayesian posterior.

3 Computation and Simulation Studies

To develop a principled inversion workflow, we
develop a cross-validation framework that simul-
taneously allows for drawing samples from a se-
quence of Gibbs posteriors and tuning W , using
ideas from stochastic gradient descent (SGD)
and sequential Monte Carlo (SMC). Furthermore,
we show that a slight extension of the varia-
tional problem 6 and our calibration strategy

Figure 2: Posterior sample draws of arterial pa-
rameters produced using L1 (orange) and L2

loss (yellow) for simulated data and the truth
(blue).

allows for between-model comparison: for dis-
tinct loss functions, we can estimate their pre-
dictive optimality in the sample space Y using
cross-validation.

We apply our methods to simulated data
that mimic dispersion curves arising in dispersion-
based wave inversions. The goal is confidence
statement about the material and geometric pa-
rameters of arterial vessels using ultrasound vi-
brometry. Fig.1 shows that our Gibbs poste-
rior estimate covers the truth used to simualte
the data, with its shape capturing the correla-
tion between the parameters due to the model
structure. Fig.2 compares different Gibbs pos-
terior samples obtained by using different loss
functions. In this example, L1 loss is similarly
accurate as L2 loss in covering the truth, but
leads to a narrower confidence region estimate
and better predictive performance.
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