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Numerical methods for a Schrödinger equation inverse eigenvalue problem
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Abstract

We seek to solve for the potential function that
satisfies the one-dimensional time-independent
Schrödinger equation for a given set of eigenval-
ues. A variety of formulations are considered,
which are all based on a discretization of this
problem. The resulting systems of equations
are solved using root-finding and optimization-
based methods. Our results show that the suc-
cess of these approaches depends on the distance
between the eigenvalues.
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1 Problem Setting

The Schrödinger equation plays a central role in
the description of waves in quantum mechanics.
It is of great practical interest to design physical
systems with prescribed energy levels. Inspired
by this, we consider the one-dimensional time-
independent Schrödinger equation

−ψxx(x) + V (x)ψ(x) = λψ(x), (1)

where ψ(x), V (x), and λ correspond to the wave
function, potential function, and energy levels
in quantum mechanics, respectively. We seek to
solve for the potential function given a set of real
eigenvalues. To this end, discretization of x on
a grid allows the problem to be approximated as
(T +D)ψ⃗ = λψ⃗, where T is a (−1, 2,−1) tridi-
agonal n×n matrix representing the discretized
second-derivative operator and D = diag(di)
is a diagonal matrix, representing V (x). Let
A = T + D, where ai = 2 + di (i = 1, . . . , n)
are the diagonal elements of A. Given a set of
eigenvalues, λ⃗ = [λ1 · · · λn]T ∈ Rn, we seek to
find a⃗ = [a1 · · · an]T ∈ Rn, such that the eigen-
values of A are λ⃗, that is,

Aψ⃗ = λψ⃗ , (2)

where ψ⃗ is the corresponding eigenvector. Our
objective is to develop efficient numerical ap-
proaches for solving this inverse-eigenvalue prob-
lem (IEP). IEPs come in many different forms,
cf. [1], which describes both theory and numeri-
cal techniques. For several classes of IEPs, when

there are repeated eigenvalues the IEP is unsolv-
able almost everywhere (Theorems 3.4 and 3.10
in [1]). Hence, we require the eigenvalues to be
real and distinct and assume that λ⃗ is ordered
in increasing values.

2 System of equations formulations

There are a variety of systems of equations that
can be used to solve this problem. We con-
struct vector-valued functions for these systems
of equations. The roots of these functions are
solutions to (1). Formulations 1 and 2 described
below are obtained using the characteristic poly-
nomial of A. Formulation 3 involves simulate-
nously for a⃗ with the set of eigenvectors of A.

Formulation 1: The eigenvalues of A are the
roots of its characteristic polynomial. In this
study we consider the n = 3 case, where

det(A−λI3) = −λ3 + c1(⃗a)λ
2 + c2(⃗a)λ+ c3(⃗a),

(3)
where c1(⃗a) = a1 + a2 + a3, c2(⃗a) = −(a1a2 +
a1a3+a2a3−2), and c3(⃗a) = a1a2a3− (a1+a3).
As det(A− λI) = 0 for each λi ∈ λ⃗(A), the
requisite vector of diagonal elements, a⃗, must
be a root of the vector function

f⃗1(⃗a) =



det(A− λ1I3)
det(A− λ2I3)
det(A− λ3I3)


 .

More generally this would be a system of n poly-
nomial equations of degree n for the the n un-
knowns in a⃗.

Formulation 2: Alternatively, the characteris-
tic polynomial can be factored as

det(A− λI) = (±1)n−1(λ1−λ) . . . (λn−λ). (4)

Equating the coefficients in (3) and (4) yields
our second vector function,

f⃗2(⃗a)=




c1(⃗a)− (λ1 + λ2 + λ3)
c2(⃗a)− (λ1λ2 + λ1λ3 + λ2λ3)

c3(⃗a)− λ1λ2λ3


 .

Formulation 3: Since A is symmetric, it fol-
lows that A = PΛP⊤ where Λ = diag(λ⃗) and P
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is an orthogonal matrix whose columns are the
eigenvectors of A. It follows that

AP − PΛ = 0 and PP T = I , (5)

Let p⃗ ∈ Rn2 denote the elements of P . Using
the upper triangular part of (5) yields the vector
f⃗3(⃗a, p⃗), which corresponds to n(n+1) quadratic
equations for the n(n+ 1) unknowns a⃗ and p⃗.

3 Algorithms

With the goal of solving for a⃗∗ with f⃗i(⃗a∗) = 0⃗,
we employ two approaches. Method I is a root-
finding approach based on Newton’s Method,
which uses the Jacobian of f⃗i(⃗a) for determin-
ing the iterations. Method II is an optimiza-
tion approach that minimizes the objective func-
tion gi(⃗a) = 1

2∥f⃗i(⃗a)∥22. Method II uses a quasi-
Newton approach, which approximates the Hes-
sian matrix using the Broyden-Fletcher-Gold-
farb-Shanno (BFGS) update.

4 Initial Iterate

Root finding and optimization methods are of-
ten sensitive to the choice of initial point. To
this end, the Gershgorin Circle Theorem en-
sures that every eigenvalue of A lies within at
least one of the Gershgorin discs [2]. Applying
this to the matrix A, we conclude that there
exists at least one permutation of the eigenval-
ues such that if initial point a⃗0 is equal to this
permutation, then there is a “nearby” root with
∥a⃗∗ − a⃗0∥∞ ≤ 2. As discussed below, this theo-
rem also provides insight into the success of the
numerical methods.

5 Results

To test our methods, we first generate a set of
10,000 A matrices, whose eigenvalues are real
and distinct. Then, using permutations of those
eigenvalues as initial points, we implemented
and compared the performance of the above for-
mulations and algorithms. These experiments
show that, for all sets of eigenvalues, every com-
bination of formulations and algorithms converge
to a solution for at least one permutation of the
eigenvalues as initial point. In addition, Table
1 shows the percentage of such permutations
that converge to a solution for two categories
of eigenvalue separation. These results show
that there is a notable difference in success de-
pendent on the minimum distance between the
eigenvalues. In particular, when the eigenvalues

are well separated, i.e., if (∆λ)min ≥ 2, where
(∆λ)min ≡ mini ̸=j |λi − λj |, the algorithms find
a solution for all permutations of eigenvalues as
initial points. In contrast, when (∆λ)min < 2,
solutions are obtained for only a subset of such
permutations. In addition, when (∆λ)min < 2
more iterations are needed to find a solution.
Method I (Newton’s method) finds a solution for
a noticeably larger percentage of initial points
than Method II (Quasi-Newton Method). For
both Methods I and II, Formulations 1 and 2
perform similarly. For Method I, Formulation
3 (f⃗3(⃗a, p⃗)) finds a solution for a lower percent-
age of permutations, generally requires a larger
number of iterates, and takes substantially more
time to converge. This is likely due to the higher
dimensionality of f⃗3(⃗a, p⃗).

(∆λ)min < 2 (∆λ)min ≥ 2
M

et
ho

d
I

f⃗1(⃗a) 87.63% 100.00%

f⃗2(⃗a) 87.20% 100.00%

f⃗3(⃗a, p⃗) 63.14% 100.00%

M
et

ho
d

II

g1(⃗a) 66.97% 100.00%
g2(⃗a) 67.05% 100.00%
g3(⃗a, p⃗) 68.34% 100.00%

Table 1: Percentage of initial iterates converging
to a solution using Method I (Newton’s Method
for finding the roots of f⃗i(⃗a)) and Method II
(Quasi-Newton Method for minimizing gi(⃗a)).
Here, (∆λ)min ≡ min

i ̸=j
|λi − λj |.

6 Conclusions

We investigated numerical methods for solving
an inverse eigenvalue problem associated with
a 1-D time-independent Schrödinger equation.
We note that all the formulations and algorithms
become more sensitive to the initial point when
the minimum distance between the eigenvalues
is less than 2.
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