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Abstract

We study the inverse problems of source recov-
ery and cortical mapping for sEEG, EEG and
MEG under the quasi-static approximation of
Maxwell’s equations. These problems are known
to be ill-posed due to the existence of silent
source, i.e, those non-zero sources that gener-
ate null field. In addition the collected data are
corrupted with noise that has to be corrected
for, hence regularised Tikhonov problems will
be solved. We make use of single and double
layer potentials to express the electro-magnetic
(EM) fields associated with a source which al-
lows to simultaneously solve the source recovery
and cortical mapping problems for a particular
modality or coupled data. The expression of
the electro-magnetic fields we use make the dif-
ferent couplings of sEEG, EEG and MEG data
direct and complementary. Numerical results of
experiments performed using meshes of realistic
head geometries will be presented.
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1 Introduction

We model the head as a layered conductor with
different electric conductivities between layers
which are constant in each layer. These homoge-
neous layers are the brain, skull and scalp, with
the brain subdivided into the grey and white
matter regions. Brain activity is modelled as
vector-fields (sources) py € [M(Z0)]2, M(Zo)
being a Banach space whose elements are sup-
ported on grey/white matter interface, the sur-
face Xy. Let X; be the closed surfaces on which
the electric conductivity is discontinuous, o,
and JZ-+ are the electric conductivities inside and
outside ¥;, respectively, and H; is the Haussdorf
measure on »; then the electric potential asso-

ciated with p, at = € R3 is:
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The magnetic flux density associated with p, at
r € R3is
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where the ¢ € L?(%;) are as computed in (1).

2 Inverse Problems

We aim to solve problems of the following form
with measurement in D1 C R3 depending on the
modalities:

Problem 1 Given data f € L*(Dy) and pa-
rameters A\, \; >0,i=1,2,...,n+ 1, find
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where F corresponds to the EM data, F» to
the cortical mapping, Do is the Hilbert space

LA(Z)) x -+ X L*(Zy) x L2(Zns1) X L*(Zpy1)

which corresponds to the electric potential on
the interfaces ¥;, i =1,2,...,n+1 and S is the
product Banach space

[M(20)]3 x L*(89) x -+ x L*(8,) x L*(Zn11).
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We propose to use an alternating minimisation
procedure generating a sequence of solutions
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with some inintial guess for k = 0 by solving the
problems
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to achieve a minimiser of 7 ). Using the results
of [1,2] we conclude in both the continuous and
discrete versions of Problem 1 that the sequence
generated above converges to a minimiser of 7y, \
with the functional 7y converging to its mini-
mum linearly.
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Figure 1: The synthetic data used here was gen-
erated in OpenMEEG. In these experiments we
recover a dipolar source and perform the corti-
cal mapping using the EEG data. The possible
dipole locations are assumed apriori to be the
barycentres of the triangles of the grey/white
matter interface mesh. The red dots represent
the dipole locations.

3 Numerical Experiments

We require triangular meshes of the grey /white
matter interface, cortex, skull and scalp. Note
that (1) and (2) contain boundary integral op-
erators that are defined on the cortex, skull and
scalp. From |[3] these boundary integrals can
be computed exactly for triangular meshes and
piecewise linear ¢’s. When M(%y) is the Ba-
nach space of Borel measures, we approximate
1o by a collection of dipoles. If the possible
dipoles locations are apriori known and fixed,
we use a FISTA algorithm with ¢ penalisation
to recover the dipole moments, see Figure 1 for
EEG with Dy C ¥,,+1. Whereas if the dipoles
locations are allowed to be arbitrarily located
on Yo, we use the algorithm in [4]. If M(3y) =
L?(%g) with py being normally oriented to X,
we model the magnitude and orientation of the
vector-field as a piecewise linear L?(Xg)-function
which results in Problem 1 being a least-squares
problem. In this case a least-squares solution
based on the Moore-Penrose pseudo-inverse can
be obtained to solve the source recovery and cor-
tical mapping problem together. The source is
interpreted to be located in a neighbourhood of
the extrema of the L?(Xg) function.
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