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Abstract

We describe how low-order boundary conditions
for the convected Helmholtz equation can be
constructed using the Lorentz transformation that
maps the convected Helmholtz equation to the
standard Helmholtz equation. The new ABCs
are derived from the classical Bayliss-Turkel ABCs
and are valid for a carrier flow that varies in the
computational domain but is uniform in the ex-
terior domain. They are easy to implement in an
existing finite-element or discontinuous Galerkin
solver and lead to accurate numerical results for
both low and intermediate Mach numbers.
Keywords: Absorbing Boundary Conditions, con-
vected Helmholtz equation, Lorentz transforma-
tion

1 Introduction

In many applications, the waves propagate in
an infinite domain, which should be truncated
in order to perform numerical simulations. Do-
main truncation is therefore an important part
of computational wave dynamics and various tech-
niques have been developed over the years. In
this paper, we focus on the construction of low-
order ABCs for the convected Helmholtz equa-
tion that can be easily implemented in a discon-
tinuous Galerkin solver.

2 Convected Helmholtz equation

We consider the convected Helmholtz equation in
an infinite domain

(−iω+ ~v0 ·∇)2p−div
(
c20∇p

)
= s, in RN . (1)

The finite computational domain is Ω ⊂ RN ,
and we denote by Σ its boundary.

To construct new ABCs we make the follow-
ing assumptions on the carrier flow:

(A-1) ~v0 is incompressible, i.e. div (~v0) = 0,

(A-2) ~v0 is subsonic, i.e. |~v0| < c0,

(A-3) ~v0 and c0 are uniform in RN\Ω.

Assumptions (A-1) and (A-2) are used to en-
sure that (1) leads to a well-posed variational
problem, whereas (A-3) is used to ease the con-
struction of ABCs.

3 HDG discretization

Hybridizable Discontinuous Galerkin (HDG) meth-
ods are mixed DG methods that rely on a static
condensation process to reduce the numerical
cost. Using HDG methods allows to construct
numerical solvers with all the advantages of DG
methods (such as high-order, hp-adaptivity, nat-
ural parallelization,. . . ) for a numerical cost
similar to a continuous finite-element solver.

As detailed in [3], we need to rewrite (1) as a
first-order system to construct a HDG method.
We consider the following formulation

~σ +K0∇p+ 2iωp~v0 = 0, (2)

−ω2p+ div (~σ) = s, (3)

where K0 = c20Id + ~v0 ~v0
T and ~σ is the so-called

total flux.
To work with the formulation (2)–(3), we

want to construct an operator Z so that the
ABC reads

~σ · ~n+ Zp = 0, on Σ, (4)

where ~n is a unit normal vector to Σ.

4 Lorentz transformation

Following [2], we introduce the frequency-domain
Lorentz transform

x̃ = Ax =

(
Id +

1

α(1 + α)
~M0

~M0
T
)
x, ω̃ =

ω

α
,

(5)

where α =

√
1− | ~M0|2 is the Lorentz factor and

~M0 = ~v0/c0 is theMach vector. For uniform car-
rier flows, this change of coordinates maps the
convected Helmholtz equation to the standard
one. More precisely, we have the
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Theorem 1 If ~v0 and c0 are uniform and if
p(x, ω) is a solution to (1) then

p̃(x̃, ω̃) = α exp

[
i
ω

α2c0
~M0 · x

]
p(x, ω) (6)

is a solution to the standard Helmholtz equation

−ω̃2p̃− c20∆̃p̃ = s̃, (7)

where ∆̃ is the Laplace operator in Lorentz co-
ordinates.

5 Transformation of ABCs

We denote by Σ̃ the artificial boundary in Lorentz
coordinates. As we will transform an ABC for
p̃(x̃, ω̃) on Σ̃ into an ABC for p on Σ, it is con-
venient to chose Σ̃ circular, i.e.

Σ̃ =
{
x̃
∣∣ |x̃|2 = R2

}
. (8)

With this choice of Σ̃ the artificial boundary in
physical coordinates is the following ellipse

Σ =
{
x
∣∣ |Ax|2 = R2

}
. (9)

Then, we write an ABC for the standard Helmholtz
equation (7) on Σ̃ as

∂ñp+ Z̃p = 0, on Σ̃. (10)

It can be transformed into an ABC for p using
the

Theorem 2 If ~v0 and c0 are uniform in a neigh-
borhood of Σ and if Z is defined as

Z(x, ω) = −c20|A−1~n|Z̃(x̃, ω̃) + iω ~v0 · ~n, (11)

then
~σ · ~n+ Zp = 0, on Σ, (12)

is an ABC for the convected Helmholtz equation.

Notice that the local uniformity of the carrier
flow is ensured through assumption (A-3).

6 Numerical results

In Table 1, the error between the numerical so-
lution and an analytic solution is given for var-
ious sizes of domains and for three ABCs: the
transformation of the 0th and 1st order Bayliss-
Turkel ABCs of [1], and an ABC that selects the
outgoing plane waves that are locally orthogo-
nal to Σ. Clearly (ABC-1) outperforms the two
other ABCs. In Figure 1 and Figure 2, we

R He ABC-0 ABC-1 ABC-PW
0.5 0.75 2.14% 0.67% 8.3%
1.0 1.5 1.21% 0.62% 7.31%
1.5 2.25 0.98% 0.66% 8.02%
2.0 3.0 0.83% 0.64% 7.1%

Table 1: Relative error in the domain for | ~M0| =
0.6

give two illustrative examples using (ABC-1).
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Figure 1: Point source in a uniform flow, | ~M0| =
0.6
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Figure 2: Point source in a potential flow,
| ~M0| = 0.4
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