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Abstract

We consider the Helmholtz equation in an un-
bounded wave-guide and derive an existence re-
sult for non-singular frequencies. Proofs of such
results exist, our emphasis is that our proof uses
only energy methods. The flexibility of the new
method allows to study also the case that two
different media are used in the two unbounded
directions
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1 Introduction

We study the Helmholtz equation

−∇ · (a∇u) = ω2u+ f (H)

in the wave-guide geometry Ω := R×S with S ⊂
Rd−1 bounded Lipschitz. The coefficient of the
operator is given by a function a : Ω→ R which
is strictly positive and 1-periodic in x1. We im-
pose a Neumann condition on ∂Ω. The given
data are a source term f ∈ L2(Ω) with compact
support and a frequency ω ∈ R; below we will
assume some non-singularity assumption on ω.
Our solution concept demands u ∈ H1

loc(Ω) and:
(i) u solves (H) in Ω in the weak sense
(ii) supr∈Z ‖u‖L2((r,r+1)×S) <∞
(iii) a radiation condition is satisfied
The precise definition of the radiation condi-

tion (iii) is given below. Loosely speaking, (iii)
on the right is demanding: There exist finitely
many quasiperiodic homogeneous solutions ϕj
of (H) with positive energy-flux and correspond-
ing coefficients αj such that u−∑j αjϕj → 0 as
x1 → ∞. For further details on this condition
and for an existence proof with other methods
we refer to [1, 2].

Some further notation: We use the ellip-
tic operator Au := −∇ · (a∇u). Important
bounded subsets of Ω are the cylinders Wr :=
(r, r+1)×S, defined for arbitrary r ∈ R. These
cylinders allow, in particular, to introduce the
norm ‖u‖sL := supr∈Z ‖u‖L2(Wr). To formulate

our assumption on ω and to define below the ra-
diation condition, we introduce the space of ho-
mogeneous solutions of the Helmholtz equation,
X := {u|W0 |u ∈ H1

loc(Ω), ‖u‖sL < ∞, Au =
ω2u in Ω}.

We can now specify our assumption on the
frequency.

Definition 1 (Non-singular frequency) ω >
0 is called a non-singular frequency for the coef-
ficient a if:

(a) Finite dimension: The space X has a
basis (ϕj)1≤j≤M with quasimoments ξj ∈ [0, 2π)
such that each ϕj possesses a ξj-quasiperiodic
extension satisfying Aϕj = ω2ϕj in Ω.

(b) Non-vanishing flux: For every quasiperi-
odic function u ∈ H1

loc(Ω) with Au = ω2u, the
restriction ϕ = u|W0 ∈ X has the property that
the flux is non-vanishing:

=
∫

W0

a∇ϕ · e1ϕ̄ 6= 0 .

The basis (ϕj)1≤j≤M can be improved to an-
other basis (φ±j )1≤j≤N with 2N = M with some
orthogonality properties and with the property
that the flux of φ+j and φ−j is positive and neg-
ative, respectively. Since we have a basis of X,
every u ∈ X can be written as u =

∑N
j=1 αjφ

+
j +∑N

j=1 βjφ
−
j with appropriate factors αj , βj ∈ C.

This allows to define projections, e.g., ΠX,+ :

u 7→ ∑N
j=1 αjφ

+
j onto right-going waves. To-

gether with the orthogonal L2(W0)-projection
we can define projections onto right- and left-
going waves

Π± : L2(W0)→ X± ⊂ L2(W0).

These projections allow to extract, from an arbi-
trary function u ∈ L2(W0) the right-going part
and the left-going part. The projections also
allow to make the radiation condition precise.
Our definition turns out to be equivalent with
more classical definitions; our definition is useful
since our proofs imply the radiation condition in
this form.
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Definition 2 (Radiation condition) Let ω be
non-singular and Π± the above projections. We
say that u : Ω→ C with ‖u‖sL <∞ satisfies the
radiation condition if

Π−(u|Wr)→ 0 and Π+(u|W−r)→ 0 as r →∞ .

We identify a function on Wr with a function
on W0 via a shift.

2 Main results

As announced earlier, our results are based on
energy methods. Loosely speaking, this means
that we use only L2-based function spaces and
that our proof relies on testing procedures. A
multiplication of the equation Au = ω2u with u
or, more precisely, with the complex conjugate
of u, and an integration over the domain {ρ <
x1 < r} for arbitrary −∞ < ρ < r < ∞, we
obtain

=
∫

{ρ}×S
a∇u · e1 ū = =

∫

{r}×S
a∇u · e1 ū .

The quantity on the left is the flux of u at po-
sition ρ; more precisely, it is the right-going
energy flux. The above equality therefore ex-
presses energy conservation: the total (energy-)
flux into the domain {ρ < x1 < r} is vanishing.

Our results are based on energy conservation
principles. Let us turn to the results.

Theorem 3 (Periodic media) Let the data Ω,
f , ω, a be as described, in particular, with the
periodicity a(x+e1) = a(x) ∀x ∈ Ω and with the
frequency ω being non-singular. Then there ex-
ists one and only one solution u to the radiation
problem (i)–(iii).

The method of proof decouples the problem
on the left and on the right hand side. Because
of this, we can also treat media that are peri-
odic on the left and periodic on the right, but
these could be two different periodic media. Our
assumption on the medium can also be formu-
lated as follows: There are two periodic fields
aleft, aright : Ω → Rd×d, aleft(x + e1) = aleft(x)
and aright(x + e1) = aright(x) for every x ∈ Ω.
The coefficient a is of class L∞(Ω), it is point-
wise symmetric and positive and has the ellip-
ticity bounds Λ > λ > 0. It satisfies, for some
R0 > 0:

a(x) = aleft(x) if x1 < −R0 ,

a(x) = aright(x) if x1 > R0 .

We obtain the following result, which takes
the form of a Fredholm alternative.

Theorem 4 (Non-periodic media) Let Ω be
as above, let a : Ω→ Rd×d be periodic outside a
compact set: For some R0 > 0 holds

a(x+ e1) = a(x)

for every x ∈ Ω with |x1| > R0. Let ω > 0 be a
non-singular frequency for the left and the right
medium. If (i)–(iii) with f = 0 possesses only
the trivial solution, then there is a unique solu-
tion u for arbitrary f ∈ H−1(Ω) with compact
support.

The proof for the above two theorems can
be found in the preprint [3]. The principal idea
is to solve a Helmholtz problem in a truncated
domain {−R < x1 < R}. This is done with a
technique that was first used in [4], the solution
u = uR is found with an application of the Lax-
Milgram theorem. The energy method is used to
derive uniform bounds for the sequence (uR)R.
The limit R→∞ provides the desired solution
u of the radiation problem.
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