A fast time-stepping method for the Westervelt equation with time-fractional damping

Katherine Baker ${ }^{1}$, Lehel Banjai ${ }^{1, *}$, Mariya Ptashnyk ${ }^{1}$
${ }^{1}$ Maxwell Institute for Mathematical Sciences, Department of Mathematics, Heriot-Watt University, Edinburgh, UK, EH14 4AS
*Email: l.banjai@hw.ac.uk

Abstract

We consider the attenuated Westervelt equation, with the attenuation governed by a nonlocal in time operator. The non-locality is described by a time convolution with a singular kernel, the simplest case being that of the RiemannLiouville fractional integral. We describe a timestepping method and how a recently developed fast and memory efficient method for fractional derivatives can be applied to lessen the impact the non-locality has on the computational costs. Numerical results complete the work.

Keywords: Westervelt, damped wave equation, time-fractional derivative

1 Damped nonlinear wave equation

In this work we consider the damped Westervelt equation on a smooth domain $\Omega \subset \mathbb{R}^{d}, d=2,3$,

$$
\begin{equation*}
\partial_{t}^{2} u-\Delta u-a \beta * \Delta \partial_{t} u=k \partial_{t}^{2}\left(u^{2}\right), \tag{1}
\end{equation*}
$$

where

$$
f * g(t)=\int_{0}^{t} f(t-\tau) g(\tau) d \tau
$$

denotes the one sided convolution, $a>0, k>0$ constants and $\beta: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$. Westervelt equation is a fundamental model in nonlinear acoustics with, e.g., the above damped equation capable of modelling of ultrasound in lossy media such as human tissue.

We assume that the kernel β satisfies

$$
\begin{equation*}
\beta \in L_{\mathrm{loc}}^{1}(0, \infty), \quad \beta \geq 0, \quad \beta^{\prime} \leq 0 \tag{2}
\end{equation*}
$$

and that its Laplace transform $\hat{\beta}$ satisfies

$$
\begin{equation*}
\operatorname{Re} \frac{1}{\hat{\beta}(z)} \geq C_{\beta}(\sigma)>0 \quad \text { for } \operatorname{Re} z \geq \sigma>0 \tag{3}
\end{equation*}
$$

Typical example of β we have in mind is

$$
\begin{equation*}
\beta(t)=\frac{1}{\Gamma(\mu)} t^{\mu-1} e^{-r t}, \tag{4}
\end{equation*}
$$

for constants $r \geq 0$ and $\mu \in(0,1)$. If $r=0$, then

$$
\beta * f=I_{t}^{\mu} f \quad \text { and } \quad \beta * \partial_{t} f=\partial_{t}^{1-\mu} f
$$

where I_{t}^{μ} denotes the Riemann-Liouville fractional integral of order $\mu \in(0,1)$ and $\partial_{t}^{1-\mu}$ the Caputo derivative of order $1-\mu \in(0,1)$. The Laplace transform of β in this case is

$$
\hat{\beta}(z)=(z+r)^{-\mu} \text {. }
$$

Thus (3) is also satisfied as

$$
\operatorname{Re} \frac{1}{\hat{\beta}(z)} \geq(\sigma+r)^{\mu} \quad \text { for } \operatorname{Re} z \geq \sigma>0
$$

A number of other non-local damping operators can be found in literature. These include combinations of fractional time-derivatives and fractional space derivatives. For a list and existence and uniqueness of solutions to resulting equations, see the recent [5].

We rewrite equation (1) as

$$
\begin{aligned}
(1-2 k u) \partial_{t}^{2} u-\Delta u-a \beta * \partial_{t} \Delta u(t) d s & =2 k\left(\partial_{t} u\right)^{2} \\
u & =0 \\
u(0)=u_{0}, \quad \partial_{t} u(0) & =u_{1},
\end{aligned}
$$

where homogeneous Dirichlet condition is taken for simplicity. Next, we present a time-discretisation of the equations in this form.

2 Time-discretization

Let $\Delta t>0$ be the uniform time-step and $t_{n}=$ $n \Delta t$ the discrete times at which u_{n} denotes the approximation of $u\left(t_{n}\right)$. We introduce some notation to more easily present the discretization:

$$
\begin{aligned}
D u_{n} & =\frac{1}{2 \Delta t}\left(u_{n+1}-u_{n-1}\right), \\
D^{2} u_{n} & =\frac{1}{\Delta t^{2}}\left(u_{n+1}-2 u_{n}+u_{n-1}\right), \\
\{u\}_{n} & =\frac{1}{4}\left(u_{n+1}+2 u_{n}+u_{n-1}\right) .
\end{aligned}
$$

We now discretize the equation using the trapezoidal rule (a second-order, A-stable Newmark scheme). The time-discrete system then reads:

$$
\begin{gathered}
\left(1-2 k\{u\}_{n}\right) D^{2} u_{n}-\Delta\{u\}_{n}-a \beta *_{\Delta t} D \Delta u_{n} \\
=2 k\left(D u_{n}\right)^{2}
\end{gathered}
$$

where $\beta * \Delta t g_{n}$ denotes a convolution quadrature [6] approximation of $\int_{0}^{t_{n}} \beta\left(t_{n}-\tau\right) g(\tau) d \tau$. Similar time-discretization but with explicit timestepping was analyzed in [1] for the linear case $k=0$.

Under the assumptions on β, convolution quadrature conserves a certain positivity property of the convolution, namely

$$
\begin{aligned}
& \sum_{j=0}^{\infty} \varrho^{2 j}\left\langle v_{j}, \beta * \Delta t v_{j}\right\rangle \\
& \quad \geq C_{\beta}(\tilde{\sigma}) \sum_{j=0}^{\infty} \varrho^{2 j}\left\|\beta * \Delta t v_{j}\right\|_{2}^{2}
\end{aligned}
$$

for any $\varrho \in(0,1)$; see [4]. If $\lim _{\sigma \rightarrow 0^{+}} C_{\beta}(\sigma)>0$, the scaling parameter ϱ can be set to 1 , which simplifies the technicalities involved in analysing the stability and convergence of the above semidiscrete system; see [2]. The latter is the case for β as in (4) with $r>0$.

3 Oblvious computation of the memory

Convolution quadrature of the time-discretization has the form

$$
\beta * \Delta t v_{n}=\sum_{j=0}^{n} \omega_{n-j} v_{j}
$$

where ω_{j} are convolution weights, which in general decay only slowly as $j \rightarrow \infty$. Thus, the numerical scheme needs to keep $O(N)$ solution vectors u_{j} in memory where N is the number of time-steps and has computational time increasing quadratically with N. This makes realistic computation difficult or impossible. Recent fast and oblivious algorithm for convolution quadrature of fractional integrals presented in [3] is directly applicable in the case (4) with $r=$ 0 and can reduce the memory requirements to $O(\log N)$ and computational cost to $O(N \log N)$. The case of $r>0$ in (4) can also be dealt with the same algorithm with some small changes.

4 Numerical results

Numerical analysis of the time-discrete system is given in [2] including a number of numerical evidence supporting the analysis. Here we present

Figure 1: Solution of fractionally damped Westervelt in 1D.
some basic computational results in 1D. The parameters in (1) are set to $k=0.09, a=0.1$, and $\mu=0.5$ and $r=0$ in (4). The initial data is a Gaussian

$$
u_{0}(x)=e^{-40 x^{2}} \quad v_{0}(0)=0
$$

The spatial discretisation is performed by the piecewise linear Galerkin finite element method. The solution is plotted in Figure 1 at various times.

References

[1] K. Baker and L. Banjai, Numerical analysis of a wave equation for lossy media obeying a frequency power law, in IMA J. Numer. Anal., (2021), online.
[2] K. Baker, L. Banjai, and M. Ptashnyk, , in preparation, (2022).
[3] L. Banjai and M. López-Fernández, Efficient high order algorithms for fractional integrals and fractional differential equations, in Numer. Math., 141(2) (2019), pp. 289-317.
[4] L. Banjai, C. Lubich, and F.-J. Sayas, Stable numerical coupling of exterior and interior problems for the wave equation, in Nu mer. Math., 129(4) (2015), pp. 611-646.
[5] B. Kaltenbacher and W. Rundell, On an inverse problem of nonlinear imaging with fractional damping, in Math. Comp., 91 (2022), 245-276.
[6] Ch. Lubich, Discretized Fractional Calculus, in SIAM Journal on Mathematical Analysis (1986), 17, pp 704-719.

