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A fast time-stepping method for the Westervelt equation with time-fractional damping
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Abstract

We consider the attenuated Westervelt equa-
tion, with the attenuation governed by a non-
local in time operator. The non-locality is de-
scribed by a time convolution with a singular
kernel, the simplest case being that of the Riemann-
Liouville fractional integral. We describe a time-
stepping method and how a recently developed
fast and memory e�cient method for fractional
derivatives can be applied to lessen the impact
the non-locality has on the computational costs.
Numerical results complete the work.
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1 Damped nonlinear wave equation

In this work we consider the damped Westervelt
equation on a smooth domain Ω ⊂ Rd, d = 2, 3,

∂2
t u−∆u− aβ ∗∆∂tu = k∂2

t (u2), (1)

where

f ∗ g(t) =

∫ t

0
f(t− τ)g(τ)dτ

denotes the one sided convolution, a > 0, k > 0
constants and β : R+ → R+. Westervelt equa-
tion is a fundamental model in nonlinear acous-
tics with, e.g., the above damped equation ca-
pable of modelling of ultrasound in lossy media
such as human tissue.

We assume that the kernel β satis�es

β ∈ L1
loc(0,∞), β ≥ 0, β′ ≤ 0 (2)

and that its Laplace transform β̂ satis�es

Re
1

β̂(z)
≥ Cβ(σ) > 0 for Re z ≥ σ > 0.

(3)
Typical example of β we have in mind is

β(t) =
1

Γ(µ)
tµ−1e−rt, (4)

for constants r ≥ 0 and µ ∈ (0, 1). If r = 0,
then

β ∗ f = Iµt f and β ∗ ∂tf = ∂1−µ
t f,

where Iµt denotes the Riemann-Liouville frac-
tional integral of order µ ∈ (0, 1) and ∂1−µ

t the
Caputo derivative of order 1 − µ ∈ (0, 1). The
Laplace transform of β in this case is

β̂(z) = (z + r)−µ.

Thus (3) is also satis�ed as

Re
1

β̂(z)
≥ (σ + r)µ for Re z ≥ σ > 0.

A number of other non-local damping oper-
ators can be found in literature. These include
combinations of fractional time-derivatives and
fractional space derivatives. For a list and ex-
istence and uniqueness of solutions to resulting
equations, see the recent [5].

We rewrite equation (1) as

(1− 2ku)∂2
t u−∆u− aβ ∗ ∂t∆u(t)ds = 2k(∂tu)2

u = 0

u(0) = u0, ∂tu(0) = u1,

where homogeneous Dirichlet condition is taken
for simplicity. Next, we present a time-discretisation
of the equations in this form.

2 Time-discretization

Let ∆t > 0 be the uniform time-step and tn =
n∆t the discrete times at which un denotes the
approximation of u(tn). We introduce some no-
tation to more easily present the discretization:

Dun =
1

2∆t
(un+1 − un−1),

D2un =
1

∆t2
(un+1 − 2un + un−1),

{u}n =
1

4
(un+1 + 2un + un−1).
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We now discretize the equation using the trape-
zoidal rule (a second-order, A-stable Newmark
scheme). The time-discrete system then reads:

(1− 2k{u}n)D2un −∆{u}n − aβ ∗∆t D∆un

=2k(Dun)2,

where β∗∆tgn denotes a convolution quadrature
[6] approximation of

∫ tn
0 β(tn − τ)g(τ)dτ . Sim-

ilar time-discretization but with explicit time-
stepping was analyzed in [1] for the linear case
k = 0.

Under the assumptions on β, convolution
quadrature conserves a certain positivity prop-
erty of the convolution, namely

∞∑

j=0

%2j 〈vj , β ∗∆t vj〉

≥ Cβ(σ̃)

∞∑

j=0

%2j‖β ∗∆t vj‖22,

for any % ∈ (0, 1); see [4]. If limσ→0+ Cβ(σ) > 0,
the scaling parameter % can be set to 1, which
simpli�es the technicalities involved in analysing
the stability and convergence of the above semi-
discrete system; see [2]. The latter is the case
for β as in (4) with r > 0.

3 Oblvious computation of the memory

Convolution quadrature of the time-discretization
has the form

β ∗∆t vn =
n∑

j=0

ωn−jvj ,

where ωj are convolution weights, which in gen-
eral decay only slowly as j → ∞. Thus, the
numerical scheme needs to keep O(N) solution
vectors uj in memory where N is the number
of time-steps and has computational time in-
creasing quadratically with N . This makes re-
alistic computation di�cult or impossible. Re-
cent fast and oblivious algorithm for convolution
quadrature of fractional integrals presented in
[3] is directly applicable in the case (4) with r =
0 and can reduce the memory requirements to
O(logN) and computational cost toO(N logN).
The case of r > 0 in (4) can also be dealt with
the same algorithm with some small changes.

4 Numerical results

Numerical analysis of the time-discrete system is
given in [2] including a number of numerical ev-
idence supporting the analysis. Here we present
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Figure 1: Solution of fractionally damped West-
ervelt in 1D.

some basic computational results in 1D. The pa-
rameters in (1) are set to k = 0.09, a = 0.1, and
µ = 0.5 and r = 0 in (4). The initial data is a
Gaussian

u0(x) = e−40x2 v0(0) = 0.

The spatial discretisation is performed by the
piecewise linear Galerkin �nite element method.
The solution is plotted in Figure 1 at various
times.

References

[1] K. Baker and L. Banjai, Numerical analysis
of a wave equation for lossy media obeying
a frequency power law, in IMA J. Numer.

Anal., (2021), online.

[2] K. Baker, L. Banjai, and M. Ptashnyk, , in
preparation, (2022).

[3] L. Banjai and M. López-Fernández, E�-
cient high order algorithms for fractional
integrals and fractional di�erential equa-
tions, in Numer. Math., 141(2) (2019), pp.
289�317.

[4] L. Banjai, C. Lubich, and F.-J. Sayas, Sta-
ble numerical coupling of exterior and inte-
rior problems for the wave equation, in Nu-

mer. Math., 129(4) (2015), pp. 611�646.

[5] B. Kaltenbacher and W. Rundell, On an
inverse problem of nonlinear imaging with
fractional damping, in Math. Comp., 91
(2022), 245�276.

[6] Ch. Lubich, Discretized Fractional Cal-
culus, in SIAM Journal on Mathematical

Analysis (1986), 17, pp 704�719.

Suggested members of the Scienti�c Committee:

Vanja Nikoli¢ and Barbara Kaltenbacher


