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A fast time-stepping method for the Westervelt equation with time-fractional damping
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Abstract

We consider the attenuated Westervelt equa-
tion, with the attenuation governed by a non-
local in time operator. The non-locality is de-
scribed by a time convolution with a singular

kernel, the simplest case being that of the Riemann-

Liouville fractional integral. We describe a time-
stepping method and how a recently developed
fast and memory efficient method for fractional
derivatives can be applied to lessen the impact
the non-locality has on the computational costs.
Numerical results complete the work.
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1 Damped nonlinear wave equation
In this work we consider the damped Westervelt
equation on a smooth domain Q C R%, d = 2, 3,

O*u — Au — aff * Adyu = k02 (u?), (1)

where

foglt) = /0 £t - r)g(r)dr

denotes the one sided convolution, a > 0,k > 0
constants and 3 : Ry — R;. Westervelt equa-
tion is a fundamental model in nonlinear acous-
tics with, e.g., the above damped equation ca-
pable of modelling of ultrasound in lossy media
such as human tissue.

We assume that the kernel § satisfies

B € L. (0,00), B8>0, /<0 (2

and that its Laplace transform 3 satisfies

for Rez >0 > 0.

(3)

ReB > Cg(o) >0

Bt) = thte ", (4)

for constants » > 0 and p € (0,1). If r = 0,
then

Bxf=1I'f and Bxdf=0 "f

where I!' denotes the Riemann-Liouville frac-
tional integral of order y € (0,1) and 8; * the
Caputo derivative of order 1 — pu € (0,1). The
Laplace transform of § in this case is

A~

B(z) = (z+1)"
Thus (3) is also satisfied as

1
Re— > (o +r)

B(z)

A number of other non-local damping oper-
ators can be found in literature. These include
combinations of fractional time-derivatives and
fractional space derivatives. For a list and ex-
istence and uniqueness of solutions to resulting
equations, see the recent [5].

We rewrite equation (1) as

for Rez >0 > 0.

(1 — 2ku)0?u — Au — aff * 9, Au(t)ds = 2k(dyu)?
u=20
u(0) =ug, Owu(0) = uy,

where homogeneous Dirichlet condition is taken

for simplicity. Next, we present a time-discretisation

of the equations in this form.

2 Time-discretization

Let At > 0 be the uniform time-step and ¢, =
n/At the discrete times at which w,, denotes the
approximation of u(t,). We introduce some no-
tation to more easily present the discretization:

1
Du, = TAt(un+1 - un—1)7
1

D?u,, = A—ﬁ(unﬂ — 2Up + Up—1),

1
{u}, = Z(Un+1 + 2up + Up—1).
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We now discretize the equation using the trape-
zoidal rule (a second-order, A-stable Newmark
scheme). The time-discrete system then reads:

(1 — 2k{u},)D*u, — A{u}, — af xa¢ DAu,
=2k(Duy,)?,

where B*a¢ g, denotes a convolution quadrature
[6] approximation of fg" B(t, — 7)g(7)dr. Sim-
ilar time-discretization but with explicit time-
stepping was analyzed in [1] for the linear case
k=0.

Under the assumptions on [, convolution
quadrature conserves a certain positivity prop-
erty of the convolution, namely

e .
> 0% (v), B xar v))
7=0

o0
> Cp(5) Y 0™]|8 *a0 vy,

j=0
for any o € (0,1); see [4]. If lim, o+ Cg(o) > 0,
the scaling parameter p can be set to 1, which
simplifies the technicalities involved in analysing
the stability and convergence of the above semi-
discrete system; see [2]. The latter is the case
for 5 as in (4) with r > 0.

3 Oblvious computation of the memory

Convolution quadrature of the time-discretization

has the form

n
B *at vp = anfjvja

§j=0
where w; are convolution weights, which in gen-
eral decay only slowly as j — oco. Thus, the
numerical scheme needs to keep O(N) solution
vectors u; in memory where N is the number
of time-steps and has computational time in-
creasing quadratically with N. This makes re-
alistic computation difficult or impossible. Re-
cent fast and oblivious algorithm for convolution
quadrature of fractional integrals presented in
[3] is directly applicable in the case (4) with r =
0 and can reduce the memory requirements to

O(log N) and computational cost to O(N log N).

The case of r > 0 in (4) can also be dealt with
the same algorithm with some small changes.

4 Numerical results

Numerical analysis of the time-discrete system is
given in [2] including a number of numerical ev-
idence supporting the analysis. Here we present
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Figure 1: Solution of fractionally damped West-
ervelt in 1D.

some basic computational results in 1D. The pa-
rameters in (1) are set to k = 0.09, a = 0.1, and
uw=0.5and r = 0 in (4). The initial data is a
Gaussian

AO2
—e 40z

up(x) v(0) = 0.

The spatial discretisation is performed by the
piecewise linear Galerkin finite element method.
The solution is plotted in Figure 1 at various
times.
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