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Abstract

Several methods in the literature determine so-
lutions to the Helmholtz equation by solving in-
stances of a discrete time-domain wave equa-
tion. In this work we study a new method of this
type. Given an indefinite linear system, a ma-
trix recurrence relation is constructed, such that
in the limit of infinitely many time steps the ex-
act discrete solution is obtained, i.e. unaffected
by time-discretization errors. Using a large, fi-
nite number of time steps, an approximate so-
lution is obtained. To improve the convergence,
the process is used as a preconditioner for GM-
RES, and the time-harmonic forcing term is mul-
tiplied by a smooth window function. We study
the convergence of the method analytically and
numerically, and conclude with some initial re-
sults about the performance on the GPUs.
Keywords: Helmholtz equation, fast solvers, wave
equation, parallel computing

1 Introduction

High-frequency Helmholtz equations, i.e. when
a large number of wave lengths fit inside the
domain, are still difficult to solve, even though
a large number of approaches has been studied.

The cost of these different methods may be
of different forms. Domain decomposition meth-
ods typically require the factorization of sparse
matrices from discretized Helmholtz equation
on the subdomains. Such factorizations require
large amounts of memory and are often (for larger
problems) not so easy to parallellize. Other
methods, including time-domain Helmholtz solvers,
generally require many applications of sparse
matrices like those from a discrete Helmholtz
or time-domain wave equation. While requir-
ing many computations, these methods can be
much less memory intensive.

In all cases, the question is how to optimally
make use of modern hardware such as Graph-
ics Processing Units (GPUs). GPUs have many
compute cores (1000s per GPU unit), a large

memory bandwidth (between compute cores and
GPUmemory) and are suitable to execute struc-
tured and “local” computations with high effi-
ciency. Relatively few works study how to ex-
ploit these capabilities. Our study of time-do-
main Helmholtz solvers is motivated by the pos-
sibilities of such modern hardware, see also [2,3].

2 Method

The method takes as a starting point a linear
system

HU = F, (1)

where H is a complex N ×N matrix, such that
ReH is symmetric and ImH is symmetric posi-
tive semidefinite. For simplicity we also assume
ImH is diagonal. This is written in the form

(−ω2I + iωB +A)U = F. (2)

where A,B ∈ RN×N and ω ∈ R are such that
H = −ω2I + iωB + A (here ω is a frequency
parameter, but need not be equal to the physical
frequency).

Equation (2) is related to an ordinary dif-
ferential equation (ODE) via the substitution
d
dt ← iω. This scheme will be solved with a
time-harmonic forcing term fn. To obtain ex-
act time-harmonic solutions at the choice of fre-
quency ω, the ODE is discretized using a mod-
ified leap frog scheme

1

∆t2
(un+1 − 2un + un−1)

+
1

2∆t
B̃ (un+1 − un−1) + Ãun = α−1fn,

(3)

where Ã = α−1A, B̃ = α−1βB, with

α =
(∆t ω)2

2− 2 cos(ω∆t)
,

β =
ω∆t

sin(ω∆t)
.

(4)

The choice of A and B, ω and the time-step ∆t
can be made such that (3) is a stable scheme.
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To approximate the solution U to (1) one
can solve (3) for un, during a long time interval
[0, T ], with n up to T/∆t and with

fn = χ(n∆t)eiωn∆tF (5)

with χ a suitable window function. Then

U ≈ e−iωTuT/∆t =: PT (F ). (6)

The resulting map from F to the result of (6)
is called a time-domain preconditioner and de-
noted PT (F ).

3 Results and discussion

Theoretical and numerical results were obtained,
to be summarized here. Some of the results have
been published in [5].

The convergence was studied theoretically
and indeed the approximate solution PT (F ) →
H−1F as T →∞.

The cost of this approach depends strongly
on the size of the eigenvalues, e.g. on the “gap”
defined by

gap = min{|λ1|, . . . , |λN |}. (7)

A study of the speed of convergence reveals that
the error from a preconditioned iterative method
can be estimated by

error < Ce−(#timesteps)·gap. (8)

(The idea of studying the dependence on the
gap was take from [1].)

Numerical results obtained so far are encour-
aging. For example, a 3-D problem with about
2.54e7 degrees of freedom (the SEG/EAGE salt
model, discretized using the method of [4] us-
ing 6 points per wavelength) was solved in 601
seconds on Macbook Pro (2019) with 16 GB
of memory. Numerical results for different dis-
cretizations and using GPUs are forthcoming.

Overall, the numerical examples show good
results for finite-difference discretized Helmholtz
equations. For finite-element discretizations, both
this method and alternative methods will be
more costly and further research is necessary to
analyse the benefits in this case.
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