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Abstract

This presentation focuses on the time-domain
propagation of elastic waves through a 1D peri-
odic medium that contains non-linear imperfect
interfaces, i.e. interfaces exhibiting a disconti-
nuity in displacement and stress governed by a
non-linear constitutive relation. In this context,
we investigate transient waves with both low-
amplitude and long-wavelength, and aim at de-
riving homogenized models that describe their
effective motion.
Keywords: Homogenization – Correctors – Im-
perfect interfaces – Non-linear waves – Time-
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1 Objectives

The array of interfaces considered is generated
by a, possibly heterogeneous, cell repeated peri-
odically and bonded by interfaces that are as-
sociated with transmission conditions of non-
linear “spring-mass” type. More precisely, the
imperfect interfaces are characterized by a lin-
ear dynamics but a non-linear elasticity law.
The latter is not specified at first and only key
theoretical assumptions are required. To estab-
lish an effective model, the two-scale asymptotic
homogenization method is deployed, up to the
first-order. To begin, an effective model is ob-
tained for the leading zeroth-order contribution
to the microstructured wavefield. It amounts
to a wave equation with a non-linear constitu-
tive stress-strain relation that is inherited from
the behavior of the imperfect interfaces at the
microscale. The next first-order corrector term
is then shown to be expressed in terms of a
cell function and the solution of a linear elastic
wave equation. Without further hypothesis, the
constitutive relation and the source term of the
latter depend non-linearly on the zeroth-order
field, as does the cell function. Combining these
zeroth- and first-order models leads to an ap-
proximation of both the macroscopic behavior
of the microstructured wavefield and its small-

scale fluctuations within the periodic array.

2 Setting: microstructured configuration

We consider the propagation of transient waves
in a 1D periodic elastic medium containing im-
perfect interfaces. The latter have spacing h
and, for simplicity but with no loss of generality,
we consider that they are located at Xn = nh
with n ∈ Z. The elastic medium is supposed to
be h-periodic and linear elastic with mass den-
sity ρh(X) and Young’s modulus Eh(X). Given
a source term F , the displacement field Uh is
governed by the time-domain wave equation

ρh(X)
∂2Uh

∂t2
(X, t) =

∂Σh

∂X
(X, t) + F (X, t) (1)

where

Σh(X, t) = Eh(X)
∂Uh

∂X
(X, t),

with Σh being the stress field. Moreover, the
interfaces are assumed to be characterized by
the interface mass and rigidity parameters M
and K, respectively, together with the, possibly
non-linear, constitutive relation R, so that the
following transmission conditions apply at any
interface point Xn, see [1–4]:




M

〈〈
∂2Uh

∂t2
(·, t)

〉〉

Xn

= JΣh(·, t)KXn
(2a)

〈〈Σh(·, t)〉〉Xn
= KR

(
JUh(·, t)KXn

)
, (2b)

where, for any function g(X), we define the jump
and mean operators J·KXn

and 〈〈·〉〉Xn
as

JgKXn
= g(X+

n )− g(X−n ),

〈〈g〉〉Xn
=

1

2

(
g(X+

n ) + g(X−n )
)
.

(3)

In addition, both the displacement Uh and the
stress field Σh are continuous on the open inter-
vals (Xn, Xn+1).
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3 Main homogenization results

We now consider a reference wavelength λ∗ and
introduce the following parameters

k∗ =
2π

λ∗
and η = hk∗, (4)

k∗ being the reference wavenumber. In this study
it is assumed that η � 1 and that the source
term F is of relatively low-amplitude (an issue
that will be discussed). The objective is to de-
rive an effective dynamical model, up to the
first-order, for the waves propagating in the pe-
riodic interface array considered. More precisely,
we seek an approximation U (1) of the solution
Uh to (1–2) of the form:

Uh(X, t) = U (1)(X, t) + o(h).

The main results of this study is that the sought-
after approximation is given by

U (1)(X, t) = U0(X, t) + hU1(X, t), (5)

where the zeroth-order field U0 in (5) is contin-
uous and is solution of the problem

ρeff
∂2U0

∂t2
(X, t) =

∂Σ0

∂X
(X, t) + F (X, t)

with
Σ0(X, t) = Geff

(
E0(X, t)

)
.

Here, E0 = ∂U0/∂X and Geff is an effective strain-
stress relation that is local and, generally speak-
ing, non-linear, while ρeff is an effective mass
density. Moreover, the first-order corrector field
U1 in (5) can be written as

U1(X, t) = U1(X, t) + P
(
y, E0(X, t)

)
E0(X, t)

with y = (X−nh)/h for X ∈
(
nh, (n+1)h

)
and

where the cell function P is, generally speaking,
a non-linear function of E0. The mean field U1

is solution to the linear problem:

ρeff
∂2U1

∂t2
(X, t) =

∂Σ1

∂X
(X, t) + S

(
U0(X, t)

)

with

Σ1(X, t) = G′eff
(
E0(X, t)

)
E1(X, t),

where E1 = ∂U1/∂X, while both the parame-
ter G′eff

(
E0(X, t)

)
, which is the derivative of Geff,

and the source term S
(
U0(X, t)

)
depend explic-

itly on the zeroth-order field, locally in space

and time, and in a non-linear fashion.

Particularizing for a prototypical non-linear
interface law and in the cases of a homogeneous
periodic cell and a bilaminated one, the behav-
ior of the obtained models will then be illus-
trated on a set of numerical examples and com-
pared with full-field simulations. Both the in-
fluence of the dominant wavelength and of the
wavefield amplitude will be investigated numer-
ically, as well as the characteristic features re-
lated to non-linear phenomena.
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