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Abstract

A very general class of models for describing the
propagation of waves in dispersive electromag-
netic media is provided by generalized Lorentz
models [1]. In this work, we study the long time
behaviour of the solutions of the dissipative ver-
sion of these models.

1 Introduction

We are interested in Maxwell’s equations
{
ε0 ∂tE−∇×H + ε0 ∂tP = 0

µ0 ∂tH +∇×E + µ0 ∂tM = 0,
(1.1)

where E and H are, respectively, the electric
and magnetic fields, while P (resp. M) is the
electric polarization (resp. magnetization). In
generalized dissipative Lorentz media, these are
related to the electromagnetic field via a system
of ODE’s (the constitutive laws of the medium)




P =

Ne∑

j=1

Ω2
e,j Pj , M =

Nm∑

`=1

Ω2
m,` M`,

∂2t Pj + αe,j ∂tPj + ω2
e,j Pj = E,

∂2t M` + αm,` ∂tM` + ω2
m,`M` = H,

(1.2)

where (Pj , ∂tPj ,M`, ∂tM`) vanish at t = 0. In
(1.2), (Ωe,j ,Ωm,`) > 0 while (αe,j , αm,`) ≥ 0 and
(ωe,j , ωm,`) > 0. Our goal is to analyze the long
time behaviour of the solution of the Cauchy
problem associated to (1.1, 1.2) and any initial
data (E0,H0) under the so-called weak dissipa-
tive assumption

Ne∑

j=1

αe,j +

Nm∑

`=1

αm,` > 0. (1.3)

2 Main results

In what follows f . g means f ≤ C g, for some
constant C > 0 independent of x, t,E0,H0.

Let E(t) be the electromagnetic energy

E(t) =
1

2

∫

R3

(
ε0 |E|2 + µ0 |H|2

)
(x, t) dx (2.1)

The generic result (cf. Remark 3) is as follows

Theorem 1 For E0 and H0 in L2(R3)3 such
that ∇·E0 = ∇·H0 = 0, the energy E(t) tends to
0 when t→ +∞. Moreover if for some integers
m ≥ 0 and p ≥ 0,

(E0,H0) ∈ Hm(R3)3 ×Hm(R3)3,

|x|p (E0,H0) ∈ L1(R3)3 × L1(R3)3,

∫
R3 x

αE0 dx = 0,
∫
R3 x

αH0 dx = 0, ∀ |α| < p

(2.2)
one has a polynomial decay rate

E(t) ≤ Cmr (E0,H0)

tm
+
Cpi (E0,H0)

tp+
3
2

(2.3)

where the above constants satisfy




Cmr (E0,H0) <∼ ‖E0‖2Hm(R3) + ‖H0‖2Hm(R3) ,

Cpi (E0,H0) <∼
∥∥E0

∥∥2
L1,p(R3)

+
∥∥H0

∥∥2
L1,p(R3)

and ‖u‖L1,p(R3) :=
∥∥(1 + |x|p)u

∥∥
L1(R3)

.

Remark 2 The upper bounds in (2.3) are sharp
in the sense that similar lower bounds can be
obtained for well chosen initial data.

Remark 3 The statement of the theorem has
to be slightly modified if one of the αe,j vanishes
while α`,m = 0 for all m (or vice versa). More
precisely, with the same assumptions, one has to
replace in the estimate (2.3) t−m by t−m/2.

3 Comparison with the literature

The law (1.2) enters a more general class of non
local (in time) constitutive laws of the form

{
P(x, ·)=χe ?E(x, ·),
M(x, ·)=χm ?H(x, ·)

(3.1)
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where (χe, χm) are time convolution causal ker-
nels. The long time behaviour of solutions of
(1.1, 3.1) has been investigated in many papers
such as in [2] for bounded domains of propa-
gation (using abstract results from semi-group
theory). In these works, polynomial stability,
i.e. time decay estimates of the type

E(t) <∼ (1 + t)−p, for some p > 0, (3.2)

is proven under direct assumptions on the ker-
nels (χe, χm). In the case of Lorentz media, the
assumptions used in [2] are satisfied only under
the strong dissipativity assumption, i. e.

αe,j , αm,` > 0, ∀ j, `, (3.3)

Another major difference is in the method of
proof: we use here a more physically oriented
method based on a modal/spectral approach.

4 Method of proof

One first writes the problem as a generalized
Schrödinger equation of the form

dU
dt

+ iA(∇)U = 0 (4.1)

where U := (E,H,Pj , ∂tPj ,M`, ∂tM`) ∈ RN

with N = 3 (2+2Ne+2Nm) and A(∇) is a first
order differential operator in space. We apply
the space Fourier transform

U(x, t) −→ U(k, t),

so that U(k, t) satisfies

dU

dt
(k, t) + iA(k)U(k, t) = 0, (4.2)

where {A(k),k ∈ R3} is a family of non-normal
N × N matrices. We next derive a priori esti-
mates for U(k, t) before coming back to space
domain via Plancherel’s therorem.

We have developed two approaches to obtain es-
timates in the k-space.

(I) Via frequency dependent Lyapunov functions.

This approach is more direct but limited to the
strict dissipativity assumption (3.3).

We construct a |k|-dependent and positive qua-
dratic functional Lm,p(|k|;U) such that

d

dt
Lm,p

(
|k|;U

)
+ Φ

(
|k|
)
Lm,p(|k|;U) ≤ 0,

for some function Φ(r) > 0 (r ∈ R+
∗ ). Then

combining Grönwall’s lemma with a careful ex-
amination of the behaviour of Φ(|k|) for small
and large values of |k| leads to (2.3).

(II) Via spectral decomposition.

We use the spectrum {ωn(k)} of A(k) which is
made of the solutions of a dispersion relation
that satisfy Im ωn(k) < 0. We then use the as-
sociated spectral decomposition of A(k) to rep-
resent the solution U(k, t) of (4.2) as

U(k, t) =
∑

e−i ωn(k) t Pn(k, t)U0(k), (4.3)

where the operators Pn(k, t) are directly related
to the spectral projectors of A(k). We then split
the analysis in three parts:

(i) estimates for low (space) frequencies |k| < m,

(ii) estimates for high frequencies |k| > M ,

(iii) estimates for mid-frequenciesm ≤ |k| < M .

While step (iii) provides a uniform (in k) expo-
nential decay, the polynomial decay results from
the estimates (i) and (ii) which rely on

(a) the asymptotic behaviour of each ωn(k)

for small and large values of |k|,
(b) uniform bounds for the operators Pn(k, t).

For the above, we use the implicit function the-
orem and the holomorphic functional calculus.
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