Long time behaviour for electromagnetic waves in dissipative Lorentz media
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Abstract

A very general class of models for describing the
propagation of waves in dispersive electromag-
netic media is provided by generalized Lorentz
models [1]. In this work, we study the long time
behaviour of the solutions of the dissipative ver-
sion of these models.

1 Introduction

We are interested in Maxwell’s equations

0 E—-VxH+¢0,P=0
(1.1)

1o H+V X E+ 198, M =0,

where E and H are, respectively, the electric
and magnetic fields, while P (resp. M) is the
electric polarization (resp. magnetization). In
generalized dissipative Lorentz media, these are
related to the electromagnetic field via a system
of ODE’s (the constitutive laws of the medium)
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where (P;,0;P;, My, 0{My) vanish at t = 0. In
(1.2), (Qej, Qme) > 0 while (o j, ) > 0 and
(We,j,Wm,e) > 0. Our goal is to analyze the long
time behaviour of the solution of the Cauchy
problem associated to (1.1, 1.2) and any initial
data (Eg, Hp) under the so-called weak dissipa-
tive assumption

Ne N,
Z Qe j + Z Qe > 0. (1.3)
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2 Main results

In what follows f < g means f < C' g, for some
constant C' > 0 independent of x, ¢, Eg, Hp.

Let £(t) be the electromagnetic energy

1

£(t) = 2/}}@ (c0 [B + o [HP) (2, t) dz (2.1

The generic result (cf. Remark 3) is as follows

Theorem 1 For Eq and Hy in L?*(R3)? such
that V-Eg = V-Hy = 0, the energy E(t) tends to
0 when t — 4+00. Moreover if for some integers
m >0 andp >0,

(Eo, Hp) € H™(R?)? x H™(R3)3,
z[P (Eo, Hp) € L'(R%)3 x L1(R?)3,

Jpz 2 Eodx =0, [z 2z*Hodzr =0, ¥ |a] <p
(2.2)
one has a polynomial decay rate

m P
< C"(Eo, Ho) n Cy (Eo, Ho)
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(2.3)

where the above constants satisfy
CI" (Eo, Ho) < | Eol[7m sy + [ Holl Frm (gs)
D 2 2
C7 (Bo, Ho) < [[Bo[ 10 gy + [[Hol [0z

and [[ulogssy i= [[(1+ 2) ] 1 g
Remark 2 The upper bounds in (2.3) are sharp

i the sense that similar lower bounds can be
obtained for well chosen initial data.

Remark 3 The statement of the theorem has
to be slightly modified if one of the a. j vanishes
while oy = 0 for all m (or vice versa). More
precisely, with the same assumptions, one has to
replace in the estimate (2.3) t=™ by t~™/2.

3 Comparison with the literature

The law (1.2) enters a more general class of non
local (in time) constitutive laws of the form

{ P(z,-)=xexE(z,),

3.1
M(z, ) = Xm * H(z, ) )



where (xe, Xm) are time convolution causal ker-
nels. The long time behaviour of solutions of
(1.1, 3.1) has been investigated in many papers
such as in [2] for bounded domains of propa-
gation (using abstract results from semi-group
theory). In these works, polynomial stability,
i.e. time decay estimates of the type

EX) < (1+1t)"P, forsomep>0, (3.2)

is proven under direct assumptions on the ker-
nels (Xe, Xm)- In the case of Lorentz media, the
assumptions used in [2| are satisfied only under
the strong dissipativity assumption, i. e.

Qejy Qmye >0, V5,0, (3.3)

Another major difference is in the method of
proof: we use here a more physically oriented
method based on a modal/spectral approach.

4 Method of proof

One first writes the problem as a generalized
Schrédinger equation of the form

dU

— +iAV)U=0 (4.1)

dt
where U = (E, H, Pj,atPj,Mg, 8,51\/[@) e RV
with N =3 (2+2N.+2N,;,) and A(V) is a first
order differential operator in space. We apply
the space Fourier transform

U(z,t) — U(k,t),

so that U(k,t) satisfies

dU

E(k’t) +iAk)U(k,t) =0, (4.2)
where {A(k), k € R?} is a family of non-normal
N x N matrices. We next derive a priori esti-
mates for U(k,t) before coming back to space

domain via Plancherel’s therorem.

We have developed two approaches to obtain es-
timates in the k-space.

(1) Via frequency dependent Lyapunov functions.

This approach is more direct but limited to the
strict dissipativity assumption (3.3).

We construct a |k|-dependent and positive qua-
dratic functional £,, ,(|k|; U) such that

d

A LK 0) + () Ly (] U) <0
for some function ®(r) > 0 (r € RS). Then
combining Gronwall’s lemma with a careful ex-
amination of the behaviour of ®(|k|) for small
and large values of |k| leads to (2.3).

(II) Via spectral decomposition.

We use the spectrum {wy,(k)} of A(k) which is
made of the solutions of a dispersion relation
that satisfy Zm wy, (k) < 0. We then use the as-
sociated spectral decomposition of A(k) to rep-
resent the solution U(k,t) of (4.2) as

Uk, t) =Y e «r®1p (k t)Ug(k), (4.3)

where the operators P, (k, t) are directly related
to the spectral projectors of A(k). We then split
the analysis in three parts:

(1) estimates for low (space) frequencies |k| < m,
(ii) estimates for high frequencies |k| > M,

(iil) estimates for mid-frequencies m < |k| < M.

While step (iii) provides a uniform (in k) expo-
nential decay, the polynomial decay results from
the estimates (i) and (ii) which rely on

(a) the asymptotic behaviour of each wy,(k)
for small and large values of |k,

(b) uniform bounds for the operators P, (k,t).

For the above, we use the implicit function the-
orem and the holomorphic functional calculus.
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