Long time behaviour for electromagnetic waves in dissipative Lorentz media

Maxence CASSIER¹, Patrick JOLY², Alejandro ROSAS²

¹Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France ²POEMS, ENSTA Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France

Abstract

A very general class of models for describing the propagation of waves in dispersive electromagnetic media is provided by generalized Lorentz models [1]. In this work, we study the long time behaviour of the solutions of the dissipative version of these models.

1 Introduction

We are interested in Maxwell's equations

$$\begin{cases} \varepsilon_0 \,\partial_t \,\mathbf{E} - \nabla \times \mathbf{H} + \varepsilon_0 \,\partial_t \,\mathbf{P} = 0\\ \mu_0 \,\partial_t \,\mathbf{H} + \nabla \times \mathbf{E} + \mu_0 \,\partial_t \,\mathbf{M} = 0, \end{cases}$$
(1.1)

where \mathbf{E} and \mathbf{H} are, respectively, the electric and magnetic fields, while \mathbf{P} (resp. \mathbf{M}) is the electric polarization (resp. magnetization). In generalized dissipative Lorentz media, these are related to the electromagnetic field via a system of ODE's (the constitutive laws of the medium)

$$\begin{pmatrix}
\mathbf{P} = \sum_{j=1}^{N_e} \Omega_{e,j}^2 \mathbf{P}_j, \quad \mathbf{M} = \sum_{\ell=1}^{N_m} \Omega_{m,\ell}^2 \mathbf{M}_\ell, \\
\partial_t^2 \mathbf{P}_j + \alpha_{e,j} \partial_t \mathbf{P}_j + \omega_{e,j}^2 \mathbf{P}_j = \mathbf{E}, \\
\partial_t^2 \mathbf{M}_\ell + \alpha_{m,\ell} \partial_t \mathbf{M}_\ell + \omega_{m,\ell}^2 \mathbf{M}_\ell = \mathbf{H},
\end{pmatrix}$$
(1.2)

where $(\mathbf{P}_j, \partial_t \mathbf{P}_j, \mathbf{M}_{\ell}, \partial_t \mathbf{M}_{\ell})$ vanish at t = 0. In (1.2), $(\Omega_{e,j}, \Omega_{m,\ell}) > 0$ while $(\alpha_{e,j}, \alpha_{m,\ell}) \ge 0$ and $(\omega_{e,j}, \omega_{m,\ell}) > 0$. Our goal is to analyze the long time behaviour of the solution of the Cauchy problem associated to (1.1, 1.2) and any initial data ($\mathbf{E}_0, \mathbf{H}_0$) under the so-called weak dissipative assumption

$$\sum_{j=1}^{N_e} \alpha_{e,j} + \sum_{\ell=1}^{N_m} \alpha_{m,\ell} > 0.$$
 (1.3)

2 Main results

In what follows $f \leq g$ means $f \leq C g$, for some constant C > 0 independent of $x, t, \mathbf{E}_0, \mathbf{H}_0$.

Let $\mathcal{E}(t)$ be the electromagnetic energy

$$\mathcal{E}(t) = \frac{1}{2} \int_{\mathbb{R}^3} \left(\varepsilon_0 \left| \mathbf{E} \right|^2 + \mu_0 \left| \mathbf{H} \right|^2 \right) (x, t) \, dx \quad (2.1)$$

The generic result (cf. Remark 3) is as follows

Theorem 1 For \mathbf{E}_0 and \mathbf{H}_0 in $L^2(\mathbb{R}^3)^3$ such that $\nabla \cdot \mathbf{E}_0 = \nabla \cdot \mathbf{H}_0 = 0$, the energy $\mathcal{E}(t)$ tends to 0 when $t \to +\infty$. Moreover if for some integers $m \ge 0$ and $p \ge 0$,

$$(\mathbf{E}_{0}, \mathbf{H}_{0}) \in H^{m}(\mathbb{R}^{3})^{3} \times H^{m}(\mathbb{R}^{3})^{3},$$
$$|x|^{p} (\mathbf{E}_{0}, \mathbf{H}_{0}) \in L^{1}(\mathbb{R}^{3})^{3} \times L^{1}(\mathbb{R}^{3})^{3},$$
$$\int_{\mathbb{R}^{3}} x^{\alpha} \mathbf{E}_{0} dx = 0, \ \int_{\mathbb{R}^{3}} x^{\alpha} \mathbf{H}_{0} dx = 0, \ \forall \ |\alpha| < p$$
(2.2)

one has a polynomial decay rate

$$\mathcal{E}(t) \le \frac{C_r^m(\mathbf{E}_0, \mathbf{H}_0)}{t^m} + \frac{C_i^p(\mathbf{E}_0, \mathbf{H}_0)}{t^{p+\frac{3}{2}}} \qquad (2.3)$$

where the above constants satisfy

$$\begin{cases} C_r^m(\mathbf{E}_0, \mathbf{H}_0) \leq \|\mathbf{E}_0\|_{H^m(\mathbb{R}^3)}^2 + \|\mathbf{H}_0\|_{H^m(\mathbb{R}^3)}^2, \\ C_i^p(\mathbf{E}_0, \mathbf{H}_0) \leq \|\mathbf{E}_0\|_{L^{1,p}(\mathbb{R}^3)}^2 + \|\mathbf{H}_0\|_{L^{1,p}(\mathbb{R}^3)}^2 \end{cases}$$

and $||u||_{L^{1,p}(\mathbb{R}^3)} := \left\| (1+|x|^p) \, u \right\|_{L^1(\mathbb{R}^3)}$.

Remark 2 The upper bounds in (2.3) are sharp in the sense that similar lower bounds can be obtained for well chosen initial data.

Remark 3 The statement of the theorem has to be slightly modified if one of the $\alpha_{e,j}$ vanishes while $\alpha_{\ell,m} = 0$ for all m (or vice versa). More precisely, with the same assumptions, one has to replace in the estimate (2.3) t^{-m} by $t^{-m/2}$.

3 Comparison with the literature

The law (1.2) enters a more general class of non local (in time) constitutive laws of the form

$$\begin{cases} \mathbf{P}(x,\cdot) = \chi_e \star \mathbf{E}(x,\cdot), \\ \mathbf{M}(x,\cdot) = \chi_m \star \mathbf{H}(x,\cdot) \end{cases} (3.1)$$

where (χ_e, χ_m) are time convolution causal kernels. The long time behaviour of solutions of (1.1, 3.1) has been investigated in many papers such as in [2] for bounded domains of propagation (using abstract results from semi-group theory). In these works, polynomial stability, i.e. time decay estimates of the type

$$\mathcal{E}(t) \leq (1+t)^{-p}, \quad \text{for some } p > 0, \qquad (3.2)$$

is proven under direct assumptions on the kernels (χ_e, χ_m). In the case of Lorentz media, the assumptions used in [2] are satisfied only under the strong dissipativity assumption, i. e.

$$\alpha_{e,j}, \ \alpha_{m,\ell} > 0, \quad \forall \ j,\ell, \tag{3.3}$$

Another major difference is in the method of proof: we use here a more physically oriented method based on a modal/spectral approach.

4 Method of proof

One first writes the problem as a generalized Schrödinger equation of the form

$$\frac{d\mathcal{U}}{dt} + i\mathcal{A}(\nabla)\mathcal{U} = 0 \qquad (4.1)$$

where $\mathcal{U} := (\mathbf{E}, \mathbf{H}, \mathbf{P}_j, \partial_t \mathbf{P}_j, \mathbf{M}_\ell, \partial_t \mathbf{M}_\ell) \in \mathbb{R}^N$ with $N = 3 (2+2N_e+2N_m)$ and $\mathcal{A}(\nabla)$ is a first order differential operator in space. We apply the space Fourier transform

$$\mathcal{U}(x,t) \longrightarrow \mathbf{U}(\mathbf{k},t),$$

so that $\mathbf{U}(\mathbf{k}, t)$ satisfies

$$\frac{d\mathbf{U}}{dt}(\mathbf{k},t) + \mathrm{i}\,\mathcal{A}(\mathbf{k})\,\mathbf{U}(\mathbf{k},t) = 0, \qquad (4.2)$$

where $\{\mathcal{A}(\mathbf{k}), \mathbf{k} \in \mathbb{R}^3\}$ is a family of *non-normal* $N \times N$ matrices. We next derive a priori estimates for $\mathbf{U}(\mathbf{k}, t)$ before coming back to space domain via Plancherel's theorem.

We have developed two approaches to obtain estimates in the **k**-space.

(I) Via frequency dependent Lyapunov functions.

This approach is *more direct* but *limited* to the strict dissipativity assumption (3.3).

We construct a $|\mathbf{k}|$ -dependent and positive quadratic functional $\mathcal{L}_{m,p}(|\mathbf{k}|; \mathbf{U})$ such that

$$\frac{d}{dt} \mathcal{L}_{m,p}(|\mathbf{k}|; \mathbf{U}) + \Phi(|\mathbf{k}|) \mathcal{L}_{m,p}(|\mathbf{k}|; \mathbf{U}) \le 0,$$

for some function $\Phi(r) > 0$ $(r \in \mathbb{R}^+_*)$. Then combining Grönwall's lemma with a careful examination of the behaviour of $\Phi(|\mathbf{k}|)$ for small and large values of $|\mathbf{k}|$ leads to (2.3).

(II) Via spectral decomposition.

We use the spectrum $\{\omega_n(\mathbf{k})\}$ of $\mathcal{A}(\mathbf{k})$ which is made of the solutions of a *dispersion relation* that satisfy $\mathcal{I}m \ \omega_n(\mathbf{k}) < 0$. We then use the associated spectral decomposition of $\mathcal{A}(\mathbf{k})$ to represent the solution $\mathbf{U}(\mathbf{k}, t)$ of (4.2) as

$$\mathbf{U}(\mathbf{k},t) = \sum e^{-\mathrm{i}\,\omega_n(\mathbf{k})\,t} P_n(\mathbf{k},t) \,\mathbf{U}_0(\mathbf{k}), \quad (4.3)$$

where the operators $P_n(\mathbf{k}, t)$ are directly related to the spectral projectors of $\mathcal{A}(\mathbf{k})$. We then split the analysis in three parts:

- (i) estimates for low (space) frequencies $|\mathbf{k}| < m$,
- (ii) estimates for high frequencies $|\mathbf{k}| > M$,
- (iii) estimates for mid-frequencies $m \leq |\mathbf{k}| < M$.

While step (iii) provides a uniform (in \mathbf{k}) exponential decay, the polynomial decay results from the estimates (i) and (ii) which rely on

- (a) the asymptotic behaviour of each $\omega_n(\mathbf{k})$ for small and large values of $|\mathbf{k}|$,
- (b) uniform bounds for the operators $P_n(\mathbf{k}, t)$.

For the above, we use the implicit function theorem and the holomorphic functional calculus.

References

- M. Cassier, P. Joly, and M. Kachanovska. Mathematical models for dispersive electromagnetic waves: An overview. Computers & Mathematics with Applications, 74(11):2792–2830, dec 2017.
- [2] S. Nicaise and C. Pignotti. Asymptotic behavior of dispersive electromagnetic waves in bounded domains. Zeitschrift für angewandte Mathematik und Physik, 71(3), apr 2020.