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Abstract

We present a numerical methods tailored for
Schrödinger equations with time dependent Hamil-
tonians and rapidly oscillating solutions, such as
those arising in the modeling of controlled qu-
dits. Our method discretizes the Picard form
of the ordinary differential equation (ODE) by
Filon quadrature. The method is implicit but
the size of the linear system is always the di-
mension of the ODE independent of order. We
illustrate that the new method is superior to the
classic RK4 method.
Keywords: Filon quadrature, highly oscillatory,
quantum computing, qubit

1 Introduction

The Picard form of the ODE

dv(t)

dt
= F (t, v(t)), v(0) = u0, 0 ≤ t ≤ ∆t,

is

v(t) = u0 +

∫ ∆t

0
F (t, v(t))dt. (1)

We assume that f is smooth, and that the com-
ponents in the right hand side will be highly
oscillatory and best approximated by methods
for integrals of the type

Iω[f ] =

∫ 1

−1
f(x)eiωxdx. (2)

In particular our implicit Filon method approx-
imates the solution v(tn) by replacing the inte-
gral in (1) by Filon quadrature , [1]. This results
in schemes in the form

un+1 = un +∆t

1∑

k=0

m∑

l=0

bk,lf
(l)(tn+k, un+k).

The ω dependent weights of the Filon quadra-
ture for (2) are found by insisting that the quadra-
ture is exact for

Fm
ω =

∫ 1

−1
p(x)eiωxdx,

where p(x) is the unique degree 2m+1 Hermite
interpolation polynomial such that p(l)(±1) =
f (l)(±1), l = 0, . . . ,m.

Assuming ω ≫ 1, integration by parts

Fm
ω [f ]− Iω[f ] =

∫ 1

−1
(p(x)− f(x))eiωxdx

= −
∞∑

k=0

[
(p(k)(x)− f (k)(x))eiωx

]1
−1

(−iω)k+1

=
1

(−iω)m+1
Iω[(p− f)(m+1)]

reveals that the error of this method is O(ω−m−2).
As for all high frequency methods the error de-
crease as ω → ∞. But in the limit of ω → 0,
spectacularly the approximation becomes Fm

ω =∫ 1
−1 p(x)dx ≈

∫ 1
−1 f(x)dx, so that Fm

ω becomes
the Birkhoff-Hermite quadrature [2] and our im-
plicit Filon methods resemble Hagstrom’s Hermite-
in-time methods [3].

Figure 1: Comparison of implicit Filon method
and the 4th order accurate RK method.

2 Examples of the Implicit Filon Method

Consider the ODE
dv

dt
= (λ+ ig(t))v, v(0) = u0, 0 ≤ t ≤ ∆t, (3)

where λ ∈ C and g(t) is smooth. Generally
dv/dt is not in the form f(t)eiωt, so we rewrite

dv(t)

dt
= f(t)eiωt, f(t, v(t)) ≡ (λ+ig(t))v(t)e−iωt.

Here, the assumption is that f oscillates over a
larger timescale than v, and that it is easier to
discretize f than v.
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As f(t, v(t)) depends on v(t), the quanti-
ties f (l)(tn+1, un+1), l = 0, . . . ,m in the ap-
proximation are defined implicitly. If we set
q(t) ≡ (λ + ig(t)), and r(t) ≡ e−iωt, so that
f(t) = q(t)r(t)v(t), then the chain rule gives
f ′(t) = (q(t)r(t))′v(t) + (q(t)r(t))v′(t). Thus,
this relation together with the ODE (3) recur-
sively defines the derivatives of f in terms of
un+1 alone.

For example, if we consider the Dahlquist
equation (when g(t) = 0) the 4th order Filon
method can be expressed as

S+(ω,∆t, λ)un+1 = S−(ω,∆t, λ)un,

S+ = 1− ∆t

2
e−iω∆t

2

(
λb2,0 +

∆t

2
(λ2 − iωλ)b2,1

)
,

S− = 1 +
∆t

2
ei

ω∆t
2

(
λb1,0 +

∆t

2
(λ2 − iωλ)b1,1

)
.

Note that here all the quadrature weights are
evaluated at ω∆t

2 .
The stability of the method is governed by

the absolute value of Q = S−/S+. At the time
of writing we have not been able to prove that
this quantity is always less than unity in the
left half of the complex plane but in Figure 2
we display contours of |Q| for ω∆t/2 = 0 and
35. In both cases it appears that the method
is A-stable. In addition, from [3] we know that

Figure 2: Contours for the stability function Q
for ω = 0 (black contours) and ω∆t/2 = 35 (red
countours). The x and y axis correspond to the
real and imaginary parts of λ∆t/2.

the methods are A-stable in the limit ω → 0.
A comparison between solutions obtained with

the 4-th order implicit Filon and the classic fourth
order Runge-Kutta method (RK4) for the case
λ = iω = i10 and g(t) = cos(t) is provided in
Figure 1. The implicit Filon method achieves a

relative error 6.1× 10−2 using five time steps,
while RK4 does not achieve a single digit of pre-
cision using 50 time steps.
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Figure 3: Errors for the qubit example and (3)
as a function of points-per-wavelength.

3 Application to Controlled Qubit

A controlled qubit can be modeled by the Sch-
rödinger equation

du(t)

dt
= −i

([
0 0
0 ωA

]
+ gc(t)

[
0 1
1 0

])
u(t),

where u is the state vector and gc(t) is the con-
trol. Here we can apply the Filon quadrature
component-wise, using ω = 0 in the first com-
ponent and ω = ωA in the second component.
With these choices and with ωA = 106 and gc(t) =
cos(t), we evolve the qubit until time 10×2π/ωA.
In Figure 3 we display (in dashed lines) the er-
rors at the final time as a function of the points
per wavelength. We display results using ω =
ωA, 0.99ωA, and 0.9ωA in the second component
and, as a reference, we also display the errors us-
ing RK4. In the same figure in solid lines we dis-
play the errors for the scalar problem (3) with
g(t) = gc(t) and λ = iωA and with the same
choices of ω. The reference result for RK4 is
also displayed. Clearly our method drastically
outperforms RK4 in all cases.
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