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Abstract

In the context of linear waves in 1D microstruc-
tured media, an homogenized model is pro-
posed. It combines second-order asymptotic ho-
mogenization to account for dispersion, a refor-
mulation into an hyperbolic system, and inter-
face correctors to model transmssion from or to-
wards homogeneous media. The well posedness
of this “total model” is proven and its efficiency
is illustrated via numerical simulations. An ex-
tension to Dirac source terms is proposed.
Keywords: homogenization, dispersion, in-
terfaces

1 Introduction

We first focus on waves propagating in un-
bounded one-dimensional media (x ∈ R) char-
acterized by density ρ`(x) = ρ(x/`) and Young’s
modulus E`(x) = E(x/`), in terms of 1-periodic
functions (ρ,E) and the periodicity length `.
The material displacement is denoted u`(x, t),
and v` = ∂tu`, σ` = E`∂xu` are the velocity
field and stress field, satisfying the system:




∂tv` −

1

ρ`
∂xσ` = 0,

∂tσ` − E` ∂xv` = 0.

(1)

To avoid dealing with the oscillating coefficients
(ρ`, E`), an homogenization process is deployed.
At leading-order, it leads to a similar system
with constant coefficients ρ0 and E0, which are
respectively the mean and harmonic mean of ρ
and E. The solutions of this system are rea-
sonable approximations of (v`, σ`) for very large
wavelengths λ, i.e. when the ratio ε = `/λ van-
ishes.

For larger wavelengths, however, the mi-
crostructural effects must be accounted for, no-
tably dispersion and interface (or boundary)
layers, see [1] and the references therein. This
can be done by increasing the order of the ho-
mogenization process in ε.

2 Stress-gradient system

Pushing the homogenization up to second order
provides a family of enriched dispersive wave
equations, featuring fourth-order space, time
and “mixed” derivatives. In particular, the so-
called (mt) model studied in [1] can be reformu-
lated into a system inspired by stress-gradient
phenomenological models (see [2]):





∂tw −
a

ρ0
∂xσ = −a− 1

ρ0
r,

∂tσ − E0∂xw = 0,

∂tϕ−
a− 1

ρ0
∂xσ = −a− 1

ρ0
r,

∂tr =
E0

`2β
ϕ,

(2)

where (w, σ) are macroscopic fields gathering
the slow variations of (v`, σ`), and (ϕ, r) are aux-
iliary fields. The second-order coefficient β > 0
is imposed by the homogenization process, and
the parameter a must satisfy:

a = −βm/βt with βm + βt = −β. (3)

The velocity v` is finally approximated as:

v`(x, t) ≈
2∑

j=0

`jPj

(x
`

)
∂jxw(x, t)− ϕ(x, t), (4)

where P0 = 1 and the cell functions {Pj}j=1,2

solve auxiliary cell problems depending on (ρ,E).
A similar expansion is found for σ`, with specific
cell functions Qj . These cell functions are also
used to define β.

From hyperbolic systems properties [3], we
prove the following proposition:

Proposition 1 If the parameters (βm, βt) sat-
isfying (3) are chosen so that βm < 0 and βt > 0
(so that a > 1), then the system (2) is hyper-
bolic, the null solution is stable, and there is an
associated positive conserved volume energy.
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3 Interfaces: first-order correctors

We consider now an interface at x = 0 between
a homogeneous medium (x < 0) caracterized by
(ρ−, E−) and a microstructured medium (x > 0)
characterized by (ρ`, E`), see Figure 1. The in-
terface is perfect, i.e. the velocity and stress
continuity are imposed on (v`, σ`). To use the
homogenized system (2) in R+, interface correc-
tors must then be found. Following [1], the con-
tinuity conditions above are applied to homog-
enized approximations such as (4). After some
reformulations, and stopping the process at first
order, the following “spring-mass” transmission
conditions on the macroscopic fields (w, σ) are
obtained:

{
JwKd = `A1 ∂t〈σ〉d,
JσKd = `B1 ∂t〈w〉d,

(5)

where JfKd and 〈f〉d denote the jump and mean
of a function f accross an enlarged interface
Id = [−d`, d`] introduced to ensure stability,
following earlier works on interface homogeniza-
tion [4]. The coefficients (A1, B1) above are then
given by:

A1 = dE−1
− + (d− P1(0))E

−1
0 ,

B1 = dρ− + (d−Q1(0))ρ0.
(6)

To ensure the positivity of these coefficients, the
interface parameter d is chosen as:

dopt := max

(
E−P1(0)

E− + E0
,
ρ0Q1(0)

ρ− + ρ0
, 0

)
. (7)

We finally prove the proposition:

Proposition 2 The "total model" made of the
system (2) and the jump conditions (5) across
an enlarged interface, where the interface pa-
rameter d is given by (7), is stable: a positive
total energy exists and is conserved.

As an example, Figure 1 presents a trans-
mitted wave from an homogeneous to a lami-
nated material for non-negligeable values of ε.
The dispersive effects are clearly observed af-
ter a short propagation time, and also affect
the reflected wave. All these features are well-
captured by the homogenized model.

Finally, the same tools will be used to
present extensions to the treatment of point-
sources (modeled by Dirac source terms) in the
microstructure.
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Figure 1: Transmission between homogeneous and
laminated media (` = 20m). Top: initial condition,
whose spectrum corresponds to ε = `/λ ∈ [0, 0.4].
Bottom: numerical reference velocity vh (blue dots)
after the transmission, and homogenized approxima-
tion including correctors in R+ as given by (4) (red
plain line).
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