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Maxwell’s equations in presence of a tip of material with negative permittivity
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Abstract
This work is devoted to the analysis of time-
harmonic Maxwell’s equations in presence of a
conical tip of a material with negative dielectric
permittivity ε and/or negative magnetic perme-
ability µ. When these constants ε and µ belong
to some critical range, the electromagnetic field
exhibits strongly oscillating singularities, such
that Maxwell’s equations are not well-posed in
the classical L2 framework. Following what has
been done for the 2D scalar case [1], we show
how to provide an appropriate functional set-
ting, adding to weighted Sobolev spaces the so-
called outgoing propagating singularities.
Keywords: time-harmonic Maxwell’s equations,
metamaterial, singularities, Kondratiev weighted
Sobolev spaces, T-coercivity, compact embed-
dings, vector potentials

1 Setting of the problem
Let Ω be a bounded domain of R3 which con-
tains an inclusion M of a particular material
(metal at optical frequency, negative index meta-
material). We assume that ∂M is of class C2

except at the origin O where M coincides lo-
cally with a conical tip. For simplicity, we sup-
pose that only ε has a sign-change (µ = 1 ev-
erywhere): ε takes the constant value ε− < 0
(resp. ε+ > 0) in M (resp. (Ω \ M)).

Figure 1: The geometry.

We consider the Maxwell’s problem
∣∣∣∣∣

curl curl E − ω2ε(x)E = iωJ (Ω)
E × ν = 0 (∂Ω)

(1)

where the current density J ∈ L2(Ω) satisfies
div J = 0. Let us introduce the scalar operator

Aε : H1
0(Ω) → (H1

0(Ω))∗ defined by

⟨Aεφ, φ′⟩ =
�

Ω
ε∇φ · ∇φ′ dx

for all φ, φ′ ∈ H1
0(Ω). It has been proved in

[2] that if Aε is an isomorphism, then problem
(1) has the following equivalent variational form
which satisfies the Fredholm property:

Find E ∈ XN such that ∀F ∈ XN�
Ω

curl E · curl F dx − ω2
�

Ω
εE · F dx

= iω

�
Ω

J · F dx

(2)

where XN := {E ∈ HN , div(εE) = 0}, with
HN := {E; E, curl E ∈ L2(Ω), (E×ν)|∂Ω = 0}.

A similar result holds, replacing XN by a
larger space X̃N when Aε is a non-injective Fred-
holm operator.

The purpose of the present work is to study
Maxwell’s problem when Aε is not a Fredholm
operator, which arises when ε−/ε+ ∈ Iε, where
Iε (a bounded subset of (−∞, 0)) is the so-called
critical interval.

2 Scalar propagating singularities
For such critical contrasts, propagating singu-
larities exist, that are of the form

s(x) = χ(r)r−1/2+iηφ(ω) with η ∈ R.

Here x = rω with r = |x| and χ ∈ D(Ω) is
a cutoff function equal to 1 near the origin.
These singular functions satisfy div(ε∇s) = 0
near the origin. Their span is a vector space
Sε of finite dimension 2Nε. Then, thanks to
a limiting absorption principle, one can define
the subspace of outgoing singularities Sout

ε =
span{sj ; j = 1, · · · Nε} such that q(sj , sk) = iδj,k

where q(u, v) =
�

Ω
div(ε∇v)u − div(ε∇u)v.

For β ∈ R and m ∈ N, recall that the weighted
Sobolev (Kondratiev) space Vm

β (Ω) is defined as
the closure of D(Ω \ {O}) for the norm

∥φ∥Vm
β

(Ω) =
(∑

|α|≤m ∥r|α|−m+β∂α
x φ∥2

L2(Ω)

)1/2
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and V̊1
β(Ω) = {φ ∈ V1

β(Ω) | φ|∂Ω = 0}. Next
for β > 0, setting V̊out

β (Ω) = V̊1
−β(Ω) ⊕ Sout

ε ,
define the operator Aout

ε : V̊out
β (Ω) → (V̊1

β(Ω))∗

such that for all u = ũ + ∑
j ajsj ∈ V̊out

β (Ω) and

v ∈ V̊1
β(Ω): ⟨Aout

ε u, v⟩ :=
 

Ω
ε∇u · ∇v where we

have set 
Ω

ε∇sj · ∇v := −
�

Ω
div(ε∇sj)v

(note that this integral coincides with the usual
one for v ∈ V̊1

−β(Ω)).
A main result established in [3] is the ex-

istence of βD > 0 such that the operator Aout
ε

is Fredholm for all β ∈ (0, βD), and an isomor-
phism as soon as Aε is injective (which is as-
sumed in what follows).

3 A new framework for Maxwell’s equa-
tions

The above results for the scalar problem lead to
look for the solution of problem (1) in the space

Xout
N := {E = ∑

j aj∇sj + Ẽ; Ẽ ∈ HN ,

aj ∈ C, div(εE) = 0}.

Note that XN ⊂ Xout
N . Using the fact that Aout

ε

is an isomorphism, one can check that a solution
of

Find E ∈ Xout
N such that ∀F ∈ Xout

N�
Ω

curl E · curl F dx − ω2
 

Ω
εE · F dx

= iω

�
Ω

J · F dx

(3)

is indeed a solution of (1). This result and the
analysis of (3) rely on the key following regular-
ity result. If E = ∑

j aj∇sj + Ẽ ∈ Xout
N , then

for any β < min(βD, 1/2), Ẽ ∈ V0
−β(Ω). More-

over there is a constant C > 0 independent of
E such that

∑
j |aj | + ∥Ẽ∥V0

−β(Ω) ≤ C ∥ curl E∥Ω.

As a consequence, ∥ curl ·∥Ω is a norm in Xout
N .

Besides, one can prove the following compact-
ness result: for any bounded sequence E(n) =
∑

j a
(n)
j ∇sj + Ẽ

(n) of Xout
N , there exists a subse-

quence such that a
(n)
j converges in C and Ẽ

(n)

converges in V0
−β(Ω). Summing up, one can

prove the

Theorem 1 Fredholm alternative holds for prob-
lem (3): if uniqueness holds, then the problem
is well-posed.

Concerning uniqueness, note that if E is a
solution of (3) for J = 0, then taking F = E,
we get ℑm

( 
Ω

εE · E dx

)
=

∑

j

|aj |2 = 0. This

proves that any solution E of the homogeneous
problem (3) belongs to the classical space XN .
Such a solution is called a trapped mode by
analogy with waveguides problems.

4 Some concluding remarks
Since XN is a closed subset of Xout

N , we see
by previous theorem that Fredholm alternative
also holds for problem (2) set in the classical
framework. But what is wrong with this formu-
lation is that a solution of (2) is not, in general,
a solution of Maxwell’s equation (1).

If µ is also negative in the inclusion M, we
have to consider another scalar operator. Let
H1

#(Ω) be the subset of H1(Ω) of functions with
zero mean value. Consider the operator Aµ :
H1

#(Ω) → (H1
#(Ω))∗ defined by

⟨Aµφ, φ′⟩ =
�

Ω
µ∇φ · ∇φ′ dx

for all φ, φ′ ∈ H1
#(Ω). If Aµ is a Fredholm

operator, the previous results can be easily ex-
tended, using T-coercivity arguments. But if it
is not, not only E has to be singular, but also
curl E (and therefore the magnetic field). For
this case where both contrasts in ε and µ are
critical, an appropriate functional framework is
given in [3] in which Fredholmness is restored.
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