Maxwell's equations in presence of a tip of material with negative permittivity

Anne-Sophie Bonnet-Ben Dhia ${ }^{1, *}$, Lucas Chesnel ${ }^{2}$, Mahran Rihani ${ }^{1,2}$
${ }^{1}$ POEMS (CNRS-INRIA-ENSTA Paris), Palaiseau, France
${ }^{2}$ IDEFIX (INRIA-ENSTA Paris-EDF), Palaiseau, France

*Email: anne-sophie.bonnet-bendhia@ensta-paris.fr

Abstract

This work is devoted to the analysis of timeharmonic Maxwell's equations in presence of a conical tip of a material with negative dielectric permittivity ε and/or negative magnetic permeability μ. When these constants ε and μ belong to some critical range, the electromagnetic field exhibits strongly oscillating singularities, such that Maxwell's equations are not well-posed in the classical \mathbf{L}^{2} framework. Following what has been done for the 2D scalar case [1], we show how to provide an appropriate functional setting, adding to weighted Sobolev spaces the socalled outgoing propagating singularities.

Keywords: time-harmonic Maxwell's equations, metamaterial, singularities, Kondratiev weighted Sobolev spaces, T-coercivity, compact embeddings, vector potentials

1 Setting of the problem

Let Ω be a bounded domain of \mathbb{R}^{3} which contains an inclusion \mathcal{M} of a particular material (metal at optical frequency, negative index metamaterial). We assume that $\partial \mathcal{M}$ is of class C^{2} except at the origin O where \mathcal{M} coincides locally with a conical tip. For simplicity, we suppose that only ε has a sign-change $(\mu=1 \mathrm{ev}$ erywhere): ε takes the constant value $\varepsilon_{-}<0$ $\left(\right.$ resp. $\left.\varepsilon_{+}>0\right)$ in $\mathcal{M}(\operatorname{resp} .(\Omega \backslash \overline{\mathcal{M}}))$.

Figure 1: The geometry.
We consider the Maxwell's problem

$$
\begin{align*}
& \text { curl curl } \boldsymbol{E}-\omega^{2} \varepsilon(\boldsymbol{x}) \boldsymbol{E}=i \omega \boldsymbol{J} \\
& \boldsymbol{E} \times \nu=0 \quad(\partial \Omega) \tag{1}
\end{align*}
$$

where the current density $\boldsymbol{J} \in \mathbf{L}^{2}(\Omega)$ satisfies $\operatorname{div} \boldsymbol{J}=0$. Let us introduce the scalar operator

$$
\begin{aligned}
& A_{\varepsilon}: \mathrm{H}_{0}^{1}(\Omega) \rightarrow\left(\mathrm{H}_{0}^{1}(\Omega)\right)^{*} \text { defined by } \\
& \qquad\left\langle A_{\varepsilon} \varphi, \varphi^{\prime}\right\rangle=\int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \overline{\varphi^{\prime}} d x
\end{aligned}
$$

for all $\varphi, \varphi^{\prime} \in \mathrm{H}_{0}^{1}(\Omega)$. It has been proved in [2] that if A_{ε} is an isomorphism, then problem (1) has the following equivalent variational form which satisfies the Fredholm property:

$$
\begin{align*}
& \text { Find } \boldsymbol{E} \in \mathbf{X}_{N} \text { such that } \forall \boldsymbol{F} \in \mathbf{X}_{N} \\
& \int_{\Omega} \operatorname{curl} \boldsymbol{E} \cdot \mathbf{c u r l} \overline{\boldsymbol{F}} d x-\omega^{2} \int_{\Omega} \varepsilon \boldsymbol{E} \cdot \overline{\boldsymbol{F}} d x \tag{2}\\
& =i \omega \int_{\Omega} \boldsymbol{J} \cdot \overline{\boldsymbol{F}} d x
\end{align*}
$$

where $\mathbf{X}_{N}:=\left\{\boldsymbol{E} \in \mathbf{H}_{N}, \operatorname{div}(\varepsilon \boldsymbol{E})=0\right\}$, with $\mathbf{H}_{N}:=\left\{\boldsymbol{E} ; \boldsymbol{E}, \operatorname{curl} \boldsymbol{E} \in \mathbf{L}^{2}(\Omega),(\boldsymbol{E} \times \nu)_{\mid \partial \Omega}=0\right\}$.

A similar result holds, replacing \mathbf{X}_{N} by a larger space $\tilde{\mathbf{X}}_{N}$ when A_{ε} is a non-injective Fredholm operator.

The purpose of the present work is to study Maxwell's problem when A_{ε} is not a Fredholm operator, which arises when $\varepsilon_{-} / \varepsilon_{+} \in I_{\varepsilon}$, where $I_{\varepsilon}($ a bounded subset of $(-\infty, 0))$ is the so-called critical interval.

2 Scalar propagating singularities

For such critical contrasts, propagating singularities exist, that are of the form

$$
\mathfrak{s}(x)=\chi(r) r^{-1 / 2+i \eta} \varphi(\omega) \text { with } \eta \in \mathbb{R}
$$

Here $x=r \omega$ with $r=|x|$ and $\chi \in \mathscr{D}(\Omega)$ is a cutoff function equal to 1 near the origin. These singular functions satisfy $\operatorname{div}(\varepsilon \nabla \mathfrak{s})=0$ near the origin. Their span is a vector space $\mathcal{S}_{\varepsilon}$ of finite dimension $2 N_{\varepsilon}$. Then, thanks to a limiting absorption principle, one can define the subspace of outgoing singularities $\mathcal{S}_{\varepsilon}^{\text {out }}=$ $\operatorname{span}\left\{\mathfrak{s}_{j} ; j=1, \cdots N_{\varepsilon}\right\}$ such that $q\left(\mathfrak{s}_{j}, \mathfrak{s}_{k}\right)=i \delta_{j, k}$ where $q(u, v)=\int_{\Omega} \operatorname{div}(\varepsilon \nabla v) \bar{u}-\operatorname{div}(\varepsilon \nabla u) \bar{v}$.

For $\beta \in \mathbb{R}$ and $m \in \mathbb{N}$, recall that the weighted Sobolev (Kondratiev) space $\mathrm{V}_{\beta}^{m}(\Omega)$ is defined as the closure of $\mathscr{D}(\bar{\Omega} \backslash\{O\})$ for the norm

$$
\|\varphi\|_{V_{\beta}^{m}(\Omega)}=\left(\sum_{|\alpha| \leq m}\left\|r^{|\alpha|-m+\beta} \partial_{x}^{\alpha} \varphi\right\|_{\mathrm{L}^{2}(\Omega)}^{2}\right)^{1 / 2}
$$

and $\stackrel{\circ}{\mathrm{V}}_{\beta}^{1}(\Omega)=\left\{\varphi \in \mathrm{V}_{\beta}^{1}(\Omega) \mid \varphi_{\mid \partial \Omega}=0\right\}$. Next for $\beta>0$, setting $\stackrel{\circ}{\mathrm{V}}_{\beta}^{\text {out }}(\Omega)=\stackrel{\circ}{\mathrm{V}}_{-\beta}^{1}(\Omega) \oplus \mathcal{S}_{\varepsilon}^{\text {out }}$, define the operator $\mathrm{A}_{\varepsilon}^{\text {out }}: \stackrel{\circ}{\mathrm{V}}_{\beta}^{\text {out }}(\Omega) \rightarrow\left(\stackrel{\circ}{\mathrm{V}}_{\beta}^{1}(\Omega)\right)^{*}$ such that for all $u=\tilde{u}+\sum_{j} a_{j} \mathfrak{s}_{j} \in \stackrel{\circ}{\circ}_{\beta}^{\text {out }}(\Omega)$ and $v \in \stackrel{\circ}{\mathrm{~V}}_{\beta}^{1}(\Omega):\left\langle\mathrm{A}_{\varepsilon}^{\text {out }} u, v\right\rangle:=f_{\Omega} \varepsilon \nabla u \cdot \nabla \bar{v}$ where we have set

$$
f_{\Omega} \varepsilon \nabla \mathfrak{s}_{j} \cdot \nabla \bar{v}:=-\int_{\Omega} \operatorname{div}\left(\varepsilon \nabla \mathfrak{s}_{j}\right) \bar{v}
$$

(note that this integral coincides with the usual one for $\left.v \in \stackrel{\circ}{\mathrm{~V}}_{-\beta}^{1}(\Omega)\right)$.

A main result established in [3] is the existence of $\beta_{D}>0$ such that the operator $A_{\varepsilon}^{\text {out }}$ is Fredholm for all $\beta \in\left(0, \beta_{D}\right)$, and an isomorphism as soon as A_{ε} is injective (which is assumed in what follows).

3 A new framework for Maxwell's equations

The above results for the scalar problem lead to look for the solution of problem (1) in the space

$$
\begin{aligned}
& \mathbf{X}_{N}^{\text {out }}:=\left\{\boldsymbol{E}=\sum_{j} a_{j} \nabla \mathfrak{s}_{j}+\widetilde{\boldsymbol{E}} ; \widetilde{\boldsymbol{E}} \in \mathbf{H}_{N}\right. \\
& \left.a_{j} \in \mathbb{C}, \operatorname{div}(\varepsilon \boldsymbol{E})=0\right\}
\end{aligned}
$$

Note that $\mathbf{X}_{N} \subset \mathbf{X}_{N}^{\text {out }}$. Using the fact that $\mathrm{A}_{\varepsilon}^{\text {out }}$ is an isomorphism, one can check that a solution of

$$
\begin{align*}
& \text { Find } \boldsymbol{E} \in \mathbf{X}_{N}^{\text {out }} \text { such that } \forall \boldsymbol{F} \in \mathbf{X}_{N}^{\text {out }} \\
& \int_{\Omega} \operatorname{curl} \boldsymbol{E} \cdot \operatorname{curl} \overline{\boldsymbol{F}} d x-\omega^{2} f_{\Omega} \varepsilon \boldsymbol{E} \cdot \overline{\boldsymbol{F}} d x \tag{3}\\
& \quad=i \omega \int_{\Omega} \boldsymbol{J} \cdot \overline{\boldsymbol{F}} d x \\
& \text { is indeed a solution of (1). This result and the }
\end{align*}
$$ analysis of (3) rely on the key following regularity result. If $\boldsymbol{E}=\sum_{j} a_{j} \nabla \mathfrak{s}_{j}+\widetilde{\boldsymbol{E}} \in \mathbf{X}_{N}^{\text {out }}$, then for any $\beta<\min \left(\beta_{D}, 1 / 2\right), \widetilde{\boldsymbol{E}} \in \mathbf{V}_{-\beta}^{0}(\Omega)$. Moreover there is a constant $C>0$ independent of \boldsymbol{E} such that

$$
\sum_{j}\left|a_{j}\right|+\|\widetilde{\boldsymbol{E}}\|_{\mathbf{V}_{-\beta}^{0}(\Omega)} \leq C\|\operatorname{curl} \boldsymbol{E}\|_{\Omega}
$$

As a consequence, $\|$ curl $\cdot \|_{\Omega}$ is a norm in $\mathbf{X}_{N}^{\text {out }}$. Besides, one can prove the following compactness result: for any bounded sequence $E^{(n)}=$ $\sum_{j} a_{j}^{(n)} \nabla \mathfrak{s}_{j}+\widetilde{\boldsymbol{E}}^{(n)}$ of $\mathbf{X}_{N}^{\text {out }}$, there exists a subsequence such that $a_{j}^{(n)}$ converges in \mathbb{C} and $\widetilde{\boldsymbol{E}}^{(n)}$ converges in $\mathbf{V}_{-\beta}^{0}(\Omega)$. Summing up, one can prove the

Theorem 1 Fredholm alternative holds for problem (3): if uniqueness holds, then the problem is well-posed.

Concerning uniqueness, note that if \boldsymbol{E} is a solution of (3) for $\boldsymbol{J}=0$, then taking $\boldsymbol{F}=\boldsymbol{E}$, we get $\Im m\left(f_{\Omega} \varepsilon \boldsymbol{E} \cdot \overline{\boldsymbol{E}} d x\right)=\sum_{j}\left|a_{j}\right|^{2}=0$. This proves that any solution \boldsymbol{E} of the homogeneous problem (3) belongs to the classical space \mathbf{X}_{N}. Such a solution is called a trapped mode by analogy with waveguides problems.

4 Some concluding remarks

Since \mathbf{X}_{N} is a closed subset of $\mathbf{X}_{N}^{\text {out }}$, we see by previous theorem that Fredholm alternative also holds for problem (2) set in the classical framework. But what is wrong with this formulation is that a solution of (2) is not, in general, a solution of Maxwell's equation (1).

If μ is also negative in the inclusion \mathcal{M}, we have to consider another scalar operator. Let $\mathrm{H}_{\#}^{1}(\Omega)$ be the subset of $\mathrm{H}^{1}(\Omega)$ of functions with zero mean value. Consider the operator A_{μ} : $\mathrm{H}_{\#}^{1}(\Omega) \rightarrow\left(\mathrm{H}_{\#}^{1}(\Omega)\right)^{*}$ defined by

$$
\left\langle A_{\mu} \varphi, \varphi^{\prime}\right\rangle=\int_{\Omega} \mu \nabla \varphi \cdot \nabla \overline{\varphi^{\prime}} d x
$$

for all $\varphi, \varphi^{\prime} \in \mathrm{H}_{\#}^{1}(\Omega)$. If A_{μ} is a Fredholm operator, the previous results can be easily extended, using T-coercivity arguments. But if it is not, not only \boldsymbol{E} has to be singular, but also curl \boldsymbol{E} (and therefore the magnetic field). For this case where both contrasts in ε and μ are critical, an appropriate functional framework is given in [3] in which Fredholmness is restored.

References

[1] A.-S. Bonnet-BenDhia, L. Chesnel and X. Claeys, Radiation condition for a nonsmooth interface between a dielectric and a metamaterial, Math. Models Meth. App. Sci., 3 (2013), pp. 1629-1662.
[2] A.-S. Bonnet-BenDhia, L. Chesnel and P. Ciarlet, T-coercivity for the Maxwell problem with sign-changing coefficients, Communications in Partial Differential Equations, 39 (2014), pp. 1007-1031.
[3] M. Rihani, Maxwell's equations in presence of negative materials. PhD thesis (2022).
[4] A.-S. Bonnet-Ben Dhia, L. Chesnel and M. Rihani, Maxwell's equations with hypersingularities at a conical plasmonic tip. $J M P A, 161$ (2022), pp. 70-110.

