Maxwell's equations in presence of a tip of material with negative permittivity

Anne-Sophie Bonnet-Ben Dhia^{1,*}, Lucas Chesnel², Mahran Rihani^{1,2}

¹POEMS (CNRS-INRIA-ENSTA Paris), Palaiseau, France ²IDEFIX (INRIA-ENSTA Paris-EDF), Palaiseau, France

*Email: anne-sophie.bonnet-bendhia@ensta-paris.fr

Abstract

This work is devoted to the analysis of timeharmonic Maxwell's equations in presence of a conical tip of a material with negative dielectric permittivity ε and/or negative magnetic permeability μ . When these constants ε and μ belong to some critical range, the electromagnetic field exhibits strongly oscillating singularities, such that Maxwell's equations are not well-posed in the classical \mathbf{L}^2 framework. Following what has been done for the 2D scalar case [1], we show how to provide an appropriate functional setting, adding to weighted Sobolev spaces the socalled outgoing propagating singularities.

Keywords: time-harmonic Maxwell's equations, metamaterial, singularities, Kondratiev weighted Sobolev spaces, T-coercivity, compact embeddings, vector potentials

1 Setting of the problem

Let Ω be a bounded domain of \mathbb{R}^3 which contains an inclusion \mathcal{M} of a particular material (metal at optical frequency, negative index metamaterial). We assume that $\partial \mathcal{M}$ is of class C^2 except at the origin O where \mathcal{M} coincides locally with a conical tip. For simplicity, we suppose that only ε has a sign-change ($\mu = 1$ everywhere): ε takes the constant value $\varepsilon_- < 0$ (resp. $\varepsilon_+ > 0$) in \mathcal{M} (resp. $(\Omega \setminus \overline{\mathcal{M}})$).

Figure 1: The geometry.

We consider the Maxwell's problem

$$\operatorname{curl}\operatorname{curl} \boldsymbol{E} - \omega^2 \varepsilon(\boldsymbol{x}) \boldsymbol{E} = i\omega \boldsymbol{J} \quad (\Omega)$$
$$\boldsymbol{E} \times \nu = 0 \quad (\partial\Omega) \tag{1}$$

where the current density $\boldsymbol{J} \in \mathbf{L}^2(\Omega)$ satisfies div $\boldsymbol{J} = 0$. Let us introduce the scalar operator $A_{\varepsilon}: \mathrm{H}^{1}_{0}(\Omega) \to (\mathrm{H}^{1}_{0}(\Omega))^{*}$ defined by

$$\langle A_{\varepsilon}\varphi,\varphi'\rangle = \int_{\Omega} \varepsilon \nabla \varphi \cdot \nabla \overline{\varphi'} \, dx$$

for all $\varphi, \varphi' \in \mathrm{H}^{1}_{0}(\Omega)$. It has been proved in [2] that if A_{ε} is an isomorphism, then problem (1) has the following equivalent variational form which satisfies the Fredholm property:

Find
$$\boldsymbol{E} \in \mathbf{X}_N$$
 such that $\forall \boldsymbol{F} \in \mathbf{X}_N$

$$\int_{\Omega} \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \operatorname{\mathbf{curl}} \overline{\boldsymbol{F}} \, dx - \omega^2 \int_{\Omega} \varepsilon \boldsymbol{E} \cdot \overline{\boldsymbol{F}} \, dx \quad (2)$$

$$= i\omega \int_{\Omega} \boldsymbol{J} \cdot \overline{\boldsymbol{F}} \, dx$$

where $\mathbf{X}_N := \{ \boldsymbol{E} \in \mathbf{H}_N, \operatorname{div}(\varepsilon \boldsymbol{E}) = 0 \}$, with $\mathbf{H}_N := \{ \boldsymbol{E}; \boldsymbol{E}, \operatorname{\mathbf{curl}} \boldsymbol{E} \in \mathbf{L}^2(\Omega), (\boldsymbol{E} \times \nu)_{|\partial\Omega} = 0 \}$.

A similar result holds, replacing \mathbf{X}_N by a larger space $\tilde{\mathbf{X}}_N$ when A_{ε} is a non-injective Fredholm operator.

The purpose of the present work is to study Maxwell's problem when A_{ε} is not a Fredholm operator, which arises when $\varepsilon_{-}/\varepsilon_{+} \in I_{\varepsilon}$, where I_{ε} (a bounded subset of $(-\infty, 0)$) is the so-called critical interval.

2 Scalar propagating singularities

For such critical contrasts, propagating singularities exist, that are of the form

$$\mathfrak{s}(x) = \chi(r)r^{-1/2+i\eta}\varphi(\omega)$$
 with $\eta \in \mathbb{R}$.

Here $x = r\omega$ with r = |x| and $\chi \in \mathscr{D}(\Omega)$ is a cutoff function equal to 1 near the origin. These singular functions satisfy $\operatorname{div}(\varepsilon \nabla \mathfrak{s}) = 0$ near the origin. Their span is a vector space $\mathcal{S}_{\varepsilon}$ of finite dimension $2N_{\varepsilon}$. Then, thanks to a limiting absorption principle, one can define the subspace of outgoing singularities $\mathcal{S}_{\varepsilon}^{\operatorname{out}} =$ $\operatorname{span}\{\mathfrak{s}_j; j = 1, \cdots N_{\varepsilon}\}$ such that $q(\mathfrak{s}_j, \mathfrak{s}_k) = i\delta_{j,k}$ where $q(u, v) = \int_{\Omega} \operatorname{div}(\varepsilon \nabla v)\overline{u} - \operatorname{div}(\varepsilon \nabla u)\overline{v}$. For $\beta \in \mathbb{R}$ and $m \in \mathbb{N}$, recall that the weighted

For $\beta \in \mathbb{R}$ and $m \in \mathbb{N}$, recall that the weighted Sobolev (Kondratiev) space $V_{\beta}^{m}(\Omega)$ is defined as the closure of $\mathscr{D}(\overline{\Omega} \setminus \{O\})$ for the norm

$$\|\varphi\|_{\mathcal{V}^m_{\beta}(\Omega)} = \left(\sum_{|\alpha| \le m} \|r^{|\alpha| - m + \beta} \partial_x^{\alpha} \varphi\|^2_{\mathcal{L}^2(\Omega)}\right)^{1/2}$$

and $\mathring{V}^{1}_{\beta}(\Omega) = \{\varphi \in V^{1}_{\beta}(\Omega) \mid \varphi_{\mid \partial \Omega} = 0\}$. Next for $\beta > 0$, setting $\mathring{V}^{\text{out}}_{\beta}(\Omega) = \mathring{V}^{1}_{-\beta}(\Omega) \oplus \mathcal{S}^{\text{out}}_{\varepsilon}$, define the operator $A^{\text{out}}_{\varepsilon} : \mathring{V}^{\text{out}}_{\beta}(\Omega) \to (\mathring{V}^{1}_{\beta}(\Omega))^{*}$ such that for all $u = \tilde{u} + \sum_{j} a_{j} \mathfrak{s}_{j} \in \mathring{V}^{\text{out}}_{\beta}(\Omega)$ and $v \in \mathring{V}^{1}_{\beta}(\Omega)$: $\langle A^{\text{out}}_{\varepsilon} u, v \rangle := \int_{\Omega} \varepsilon \nabla u \cdot \nabla \overline{v}$ where we have set

$$\int_{\Omega} \varepsilon \nabla \mathfrak{s}_j \cdot \nabla \overline{v} := -\int_{\Omega} \operatorname{div}(\varepsilon \nabla \mathfrak{s}_j) \overline{v}$$

(note that this integral coincides with the usual one for $v \in \mathring{V}_{-\beta}^{1}(\Omega)$).

A main result established in [3] is the existence of $\beta_D > 0$ such that the operator $A_{\varepsilon}^{\text{out}}$ is Fredholm for all $\beta \in (0, \beta_D)$, and an isomorphism as soon as A_{ε} is injective (which is assumed in what follows).

3 A new framework for Maxwell's equations

The above results for the scalar problem lead to look for the solution of problem (1) in the space

$$\begin{aligned} \mathbf{X}_N^{\text{out}} &:= \{ \boldsymbol{E} = \sum_j a_j \nabla \mathfrak{s}_j + \widetilde{\boldsymbol{E}}; \widetilde{\boldsymbol{E}} \in \mathbf{H}_N, \\ a_j \in \mathbb{C}, \, \text{div}(\varepsilon \boldsymbol{E}) = 0 \}. \end{aligned}$$

Note that $\mathbf{X}_N \subset \mathbf{X}_N^{\text{out}}$. Using the fact that $\mathbf{A}_{\varepsilon}^{\text{out}}$ is an isomorphism, one can check that a solution of

Find
$$\boldsymbol{E} \in \mathbf{X}_{N}^{\text{out}}$$
 such that $\forall \boldsymbol{F} \in \mathbf{X}_{N}^{\text{out}}$
$$\int_{\Omega} \operatorname{\mathbf{curl}} \boldsymbol{E} \cdot \operatorname{\mathbf{curl}} \overline{\boldsymbol{F}} \, dx - \omega^{2} \oint_{\Omega} \varepsilon \boldsymbol{E} \cdot \overline{\boldsymbol{F}} \, dx \qquad (3)$$
$$= i\omega \int_{\Omega} \boldsymbol{J} \cdot \overline{\boldsymbol{F}} \, dx$$

is indeed a solution of (1). This result and the analysis of (3) rely on the key following regularity result. If $\boldsymbol{E} = \sum_{j} a_{j} \nabla \mathfrak{s}_{j} + \tilde{\boldsymbol{E}} \in \mathbf{X}_{N}^{\text{out}}$, then for any $\beta < \min(\beta_{D}, 1/2), \ \tilde{\boldsymbol{E}} \in \mathbf{V}_{-\beta}^{0}(\Omega)$. Moreover there is a constant C > 0 independent of \boldsymbol{E} such that

$$\sum_{j} |a_{j}| + \|\widetilde{\boldsymbol{E}}\|_{\mathbf{V}_{-\beta}^{0}(\Omega)} \leq C \|\operatorname{\mathbf{curl}} \boldsymbol{E}\|_{\Omega}.$$

As a consequence, $\|\mathbf{curl}\cdot\|_{\Omega}$ is a norm in $\mathbf{X}_{N}^{\text{out}}$. Besides, one can prove the following compactness result: for any bounded sequence $E^{(n)} = \sum_{j} a_{j}^{(n)} \nabla \mathfrak{s}_{j} + \widetilde{\boldsymbol{E}}^{(n)}$ of $\mathbf{X}_{N}^{\text{out}}$, there exists a subsequence such that $a_{j}^{(n)}$ converges in \mathbb{C} and $\widetilde{\boldsymbol{E}}^{(n)}$ converges in $\mathbf{V}_{-\beta}^{0}(\Omega)$. Summing up, one can prove the

Theorem 1 Fredholm alternative holds for problem (3): if uniqueness holds, then the problem is well-posed. Concerning uniqueness, note that if \boldsymbol{E} is a solution of (3) for $\boldsymbol{J} = 0$, then taking $\boldsymbol{F} = \boldsymbol{E}$, we get $\Im m\left(\int_{\Omega} \varepsilon \boldsymbol{E} \cdot \overline{\boldsymbol{E}} \, dx\right) = \sum_{j} |a_{j}|^{2} = 0$. This proves that any solution \boldsymbol{E} of the homogeneous problem (3) belongs to the classical space \mathbf{X}_{N} . Such a solution is called a trapped mode by

4 Some concluding remarks

analogy with waveguides problems.

Since \mathbf{X}_N is a closed subset of $\mathbf{X}_N^{\text{out}}$, we see by previous theorem that Fredholm alternative also holds for problem (2) set in the classical framework. But what is wrong with this formulation is that a solution of (2) is not, in general, a solution of Maxwell's equation (1).

If μ is also negative in the inclusion \mathcal{M} , we have to consider another scalar operator. Let $\mathrm{H}^{1}_{\#}(\Omega)$ be the subset of $\mathrm{H}^{1}(\Omega)$ of functions with zero mean value. Consider the operator A_{μ} : $\mathrm{H}^{1}_{\#}(\Omega) \to (\mathrm{H}^{1}_{\#}(\Omega))^{*}$ defined by

$$\langle A_{\mu}\varphi,\varphi'\rangle = \int_{\Omega} \mu \nabla \varphi \cdot \nabla \overline{\varphi'} \, dx$$

for all $\varphi, \varphi' \in \mathrm{H}^{1}_{\#}(\Omega)$. If A_{μ} is a Fredholm operator, the previous results can be easily extended, using T-coercivity arguments. But if it is not, not only \boldsymbol{E} has to be singular, but also **curl** \boldsymbol{E} (and therefore the magnetic field). For this case where both contrasts in ε and μ are critical, an appropriate functional framework is given in [3] in which Fredholmness is restored.

References

- A.-S. Bonnet-BenDhia, L. Chesnel and X. Claeys, Radiation condition for a nonsmooth interface between a dielectric and a metamaterial, *Math. Models Meth. App. Sci.*, **3** (2013), pp. 1629–1662.
- [2] A.-S. Bonnet-BenDhia, L. Chesnel and P. Ciarlet, T-coercivity for the Maxwell problem with sign-changing coefficients, *Communications in Partial Differential Equations*, **39** (2014), pp. 1007–1031.
- [3] M. Rihani, Maxwell's equations in presence of negative materials. *PhD thesis* (2022).
- [4] A.-S. Bonnet-Ben Dhia, L. Chesnel and M. Rihani, Maxwell's equations with hypersingularities at a conical plasmonic tip. *JMPA*, **161** (2022), pp. 70–110.