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Abstract

In this work, we extend the spectral Galerkin
boundary integral solver for Helmholtz presented
in [1] to elastic wave scattering by multiples two-
dimensional cracks. We rigorously prove the ex-
ponential convergence rate of our proposed ap-
proximations for Dirichlet and Neumann prob-
lems. We show that solutions of the associ-
ated standard first-kind boundary integral for-
mulations take the form of a singular function
times an analytic one. Then, our method fo-
cuses on only approximating the analytic part
by the spectral method. Several numerical ex-
periments confirm our claims.
Keywords: Boundary Integral Equations, Elas-
tic wave scattering, Spectral Methods

1 Introduction

We consider an impinging elastic wave uinc in a
homogeneous isotropic and infinite two-dimen-
sional medium Ω containing M cracks, jointly
denoted by Γ. The direct problem consists on
finding the scattered wave u under the assump-
tion that either the cracks are rigid (Dirichlet)
or traction free (Neumann). The volume prob-
lems read

∆∗u+ ρω2u = 0 in R2 \ Γ,

u = −uinc, or Tu = −Tuinc on Γ,

with Kupradze radiation condition,

where ∆∗ := µdiv grad + (λ + µ)grad div, µ, λ
being the Lamé parameters of the medium, ω
the angular frequency. The traction operator
is T := 2µ∂n + λndiv − µτ curl, where n is
the normal vector, τ = (−n2, n1), and curlu =
∂1u2−∂2u1. We refer to [2] for the exact form of
the radiation condition. Remark that this prob-
lem is relevant to many engineering applications
such as non-destructive testing of materials or
fractures characterization.

These volume problems are reduced to sys-
tems of first-kind boundary integral equations
(BIEs) via appropriate indirect representations
by means of layer potentials. These can be solved,
for instance, by local polynomials defined on ap-
propriate meshes of the arcs Γ. Special care
needs to be given to how the mesh is built as
solutions may exhibit singular behaviors near
the endpoints of each arc. Typically, this en-
tails particular refinements near the endpoints
are needed to recover the traditional algebraic
convergence rate of local (low-order) approxi-
mation methods or super-algebraic convergence
of the hp-methods. However, for large numbers
of cracks and in the context of inverse problems
or uncertain quantification (UQ), the number
of degrees of freedom required by this technique
becomes impractical.

Following [1], we avoid any meshing by defin-
ing global basis constructed as polynomials mul-
tiplied by a special singular function that cap-
tures the singular behavior of the real solution.
By examining the polynomial expansion of the
BIEs solutions, we can show that our error con-
vergence rate is exponential in the polynomial
degree, assuming that the incident wave and the
geometry of each arc are given by analytic func-
tions. This proof differs from traditional results
for open arcs as we do not make use of the Mellin
transform with localization of the singularities.
Indeed, these proofs rely on the approximation
of smooth window functions which are C∞ but
not analytic, thus preventing the obtention of
exponential convergence rate.

Furthermore, and in contrast to [1], here we
also extend the analysis to hyper-singular BIEs.
The corresponding analysis was obtained using
an adequate Maue’s representation formula (see
[3]).
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2 Boundary Integral Formulation and Dis-
cretization

For Dirichlet boundary conditions, the associ-
ated BIE is

M∑

j=1

∫

Γj

E(x,y)φj(y)dsby,= −uinc|Γi ,

for every i in {1, . . . ,M}, and where E denotes
the standard fundamental solution of the the
Navier equation [2] and φj are the unknown
densities defined in Γj for each j ∈ {1, . . . ,M}.
For the Neumann problem the corresponding
formulation is
M∑

j=1

TΓi

∫

Γj

TyE(x,y)>ψj(y)dsby,= −TΓiu
inc,

where TΓi is the traction operator on Γi, and
ψj are unknown densities defined in the corre-
sponding arc Γj . The solution of the associated
volume problem is then obtained by taking the
action of the appropriate layered potential over
the densities φ, or ψ depending on the bound-
ary condition.

Assuming that Γi is the image of an ana-
lytic function ri : [−1, 1] → R2. We define
φN ◦ ri(t) =

∑2
p=1

∑N
n=0 a

i
n,pTn,p(t), and ψ

N ◦
ri(t) =

∑N
n=0 b

i
n,pUn,p(t), where

Tn,p(t) = (1− t2)
−1
2 ‖r′i(t)‖−1Tn(t)ep,

Un,p(t) = (1− t2)
1
2Un(t)ep,

with ep denoting the pth canonical vector, and
Tn and Un are the nth Chebyshev polynomials
of first and second kind, respectively. Then, we
bound the convergence rates of φN and ψN to
φ and ψ, respectively, as a function of N .

Theorem 1 Assuming that uinc ◦ ri, and ri
have analytic extension to an open region of the
complex plane containing [−1, 1], there exist ρ >
1, and % > 1, such that

‖φ− φN‖H̃−1/2(Γ)
≤ Cρ−N ,

‖ψ −ψN‖H̃1/2(Γ)
≤ C%−N ,

where C > 0 is a generic constant independent
of N .

3 Numerical Results

We consider a test case with 28 arcs, see Figure
1a, and the parameters ω = 50, λ = 2, µ = 1.
Figure 1b illustrate the errors of the method as
a function of the polynomial degree.
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(a) Example Geometry
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Dirichlet H̃−1/2 (Γ)

Neumann H̃1/2(Γ)

(b) Error respect an overkill solution
computed with N = 100. The incident
wave is given by uinc(x) = dekpx·d,
where d is an unitary vector with an-
gle π

4 with respect to the x-axis, and
kp = ω√

λ+2µ
.

4 Conclusions and Future Work

We have developed a novel strategy to study the
solution of first-kind boundary integral equa-
tions for open arcs and applied it to the analy-
sis of a spectral Galerkin method, for which we
proved the exponential convergence rate. Cur-
rent work is on to prove the convergence rates
for the Nyström discretization and the applica-
tion of the method in UQ problems.
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