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Abstract

We consider radial complex scaling/perfectly
matched layer (PML) methods for scalar res-
onance problems. First we focus on isotropic
problems and prove the convergence of approx-
imations. In particular, the analysis covers
the simultaneous approximation due to domain
truncation and discretization, and a broad range
of scaling profile functions. In addition, we
obtain convergence of eigenfunctions, conver-
gence rates and correct algebraic multiplicities
of eigenvalues. Core ingredients of the analy-
sis are the framework of T-compatible approx-
imations of weakly T-coercive operators, and
the interpretation of the domain truncation as
Galerkin approximation.

In a second part we show how to extend the
former results to anisotropic materials, whereat
some restrictions on the choice of parameters
have to be respected. To this end it is necessary
to take a close look at the complex transforma-
tion of the fundamental solution, and to obtain
an estimate on the numerical range of certain
nonhermitian matrices.
Keywords: complex scaling, perfectly matched
layer, resonances, eigenvalues, anisotropic mate-
rials, convergence analysis

1 The resonance problem

Let Ω ⊂ R3 be a Lipschitz domain such that
Ωc is nonempty and bounded. Let Br := {x ∈
R3 : |x| < r} and r0 > 0 be such that Ωc ⊂
Br0 . We consider the resonance problem to find
nontrivial solutions (ω, u) to

−∆− ω2u = 0 in Ω,

u = 0 on ∂Ω,

u(x) =
iω

4π

∫

∂Br0

u(y)∇yGω(x, y) · ν(y)

−Gω(x, y)∇yu(y) · ν(y) dy, x ∈ Bc
r0

whereat Gω(x, y) := h
(1)
0 (ω|x − y|) = eiω|x−y|

iω|x−y| is
the fundamental solution of the Helmholtz equa-
tion.

2 Radial complex scaling

Let r1 > r0, γ ∈ {z ∈ C : <(z) ≥ 0,=(z) > 0}
and α̃ be such that α̃(r) = 0 for r ≤ r1, α̃
is continuous, α̃(r) > 0 for r > r1, α̃ is nonde-
creasing, α̃ is twice continuously differentiable in
(r1,+∞) with continuous extensions of ∂rα̃ and
∂r∂rα̃ to [r1,+∞), and α̃ and α are bounded.
We define the auxiliary functions

d̃(r) := 1 + γα̃(r), r̃(r) := d̃(r)r,

α(r) := r∂rα̃(r) + α̃(r), d(r) := 1 + γα(r),

and d0 := lim
r→+∞

(d̃(r)/|d̃(r)|). Then for any res-
onance function we define formulary in spher-
ical coordinates ũ(x) := u(r̃(r)x̂). This def-
inition can indeed be justified rigorously, and
if <(iωd0) < 0, then ũ ∈ H1

0 (Ω) solves
aΩ(ω; ũ, u′) = 0 for all u′ ∈ H1

0 (Ω), whereat
Px(x) := |x|−2xx> and

aD(ω;u, u′) := −ω2〈d̃2du, u′〉L2(D)

+ 〈(d̃2d−1 Px +d(I−Px))∇u,∇u′〉L2(D).

Hence we replaced the original resonance prob-
lem with the eigenvalue problem for the
bounded sesquilinearform aΩ(·; ·, ·), which ad-
mits the essential spectrum C \Λd0 with Λd0 :=
{z ∈ C : <(izd0) 6= 0}.

3 Convergence analysis

The convenient way to approximate this eigen-
value problem is to choose a bounded subdo-
main Ωn ⊂ Ω and to discretize the eigen-
value problem for aΩn(·; ·, ·) with a finite ele-
ment space Xh(Ωn) ⊂ H1

0 (Ωn). Classically the
approximations by the domain truncation and
the finite element discretization are analyzed in
two seperate steps. However, this way it cannot
be ensured that any combination of increasing
domains Ωn → Ω and decreasing mesh param-
eters h→ 0 yields a converging approximation.
Therefore we propose a new approach to con-
duct the analysis, which combines several inde-
pendent ideas. Consider an arbitrary sequence
Xn := Xhn(Ωn) with Ωn → Ω and hn → 0.
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First we follow [4] and identify H1
0 (Ωn) with

{u ∈ H1
0 (Ω): u|Ωc

n
= 0}, and thus Xn ⊂ H1

0 (Ω).
This way we can interprete the domain trunca-
tion as conform Galerkin approximation. Sec-
ond we employ the abstract framework [3] for
the Galerkin approximation of eigenvalue prob-
lems for holomorphic operator functions. To
this end for each ω ∈ Λd0 we need to find an in-
vertible operator T ∈ L(H(1

0(Ω)) and a compact
operator K ∈ L(H(1

0(Ω)) such that T ∗A + K
is coercive, whereat A is the operator associ-
ated to a(ω; ·, ·). Let d̂(r) := limρ→r1+ d(ρ) for
r < r1 and d̂(r) := d(r) for r ≥ r1. Then we
achieve the goal with the multiplication opera-
tor Tu := d̂−1u for arg(−ω2d2

0) ∈ [−π, 0) and
Tu := d̂d̃−2u for arg(−ω2d2

0) ∈ [0, π). The sec-
ond main assumption of [3] is that we construct
operators Tn ∈ L(Xn) such that limn→∞ ‖T −
Tn‖L(Xn,H1

0 (Ω)) = 0. Let Πn be the Scott-Zhang
interpolant. Then we achieve the latter assump-
tion with Tn := ΠnT |Xn by means of a suitable
adaptation of the discrete commutator property.
Finally we construct an appropriate function to
estimate the best approximation error by the
discretization error plus the truncation error,
whereat the latter decreases exponentially with
the layer size.

4 Anisotropic materials

A widespread observation is that PMLs for
anisotropic elastodynamics can be unstable.
However, this might not be true for radial
PMLs. As a step in this direction we general-
ize the former convergence results to anisotropic
scalar materials under some mild additional as-
sumptions on the parameters. The recipe from
the isotropic case can be reused in the main
for the anisotropic case, and we focus on the
points which require some additional care. At
first we note that the we require a minimal dis-
tance r1 > c(ς)r0 from the scattering object
to the complex scaled layer, whereat c1(ς) is
a constant which depends on the material ς.
For scattering problems also all source terms
must be supported in Br0 . This assumption is
necessary to guarantee that the complex scaled
fundamental solution G̃ω,ς(x, y) is well-defined
and holomorphic. Secondly we need to assume
supr≥r1 arg(d(r)/d̃(r)) < c2(ς) with a certain
constant c2(ς) > 0. For the simplest possible
scaling r̃(r) = (1 + γ)(r − r1) + r1, r > r1 this
condition can be intepreted as a restriction on

the damping strength. In Fig. 1 we show the
geometries and meshes for an anisotropic and
two isotropic examples which admit the same
resonances. In Fig. 2 we present the computed
spectrum with a radial PML method. We recog-
nize a good correspondence between the compu-
tations and the reference values. The quality of
the computed resonances from the anisotropic
example is intermediate between the quality of
the isotropic examples.

Figure 1: geometries/meshes for anisotropic and
isotropic examples

Figure 2: computed spectrum for the
isotropic/scaled isotropic/anisotropic (+/o/x)
case, analytic reference values (�)
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