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Abstract

In a related talk [1], the Boundary Element Method

(BEM) is generalised to the case of scattering by
fractal obstacles. Implementation requires eval-
uating integrals of singular Green’s kernels over
fractal domains, with respect to Hausdorff mea-
sure. This motivated the development of new
quadrature rules, which are discussed here.
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1 Introduction

We will study numerical quadrature rules for the
evaluation of integrals of the form

ferf@)= [ [ s@patmane. o

where I' and I are compact subsets of R? of
Hausdorff dimension d > 0 and d’ > 0 respec-

tively, H¢ and HY are the corresponding Haus-
eiklz—yl

dorff measures, and ®(z,y) = ] is the fun-
damental solution for the Helmholtz equation
with wavenumber k& > 0 in R?. (In what follows,
similar results hold for the analogous problem
posed in R2.)

Our motivation for approximating (1) is the
Hausdorff BEM, which is introduced and anal-
ysed in the talk [1]. Such BEMs can model scat-
tering by planar screens with non-integer (frac-

tal) dimension, i.e. d € (1,2).

2 Attractors of Iterated Function Systems

Now we describe in detail the class of fractal
scatterers that we consider. An iterated func-
tion system (IFS) is a set of 2 < M € N con-
tracting similarities sy, (x) = pmAm®+ o, with
contraction factors p, € (0,1), rotation ma-
trices A,, € R™" and translations §,, € R",
for m = 1,..., M. Saying that I' is the attrac-
tor of the IFS means that I' is the unique non-
empty compact set satisfying I' = s(I'), where
s(E) :==UM_ sn(E), ECR™

Our quadrature rules are based on splitting
I into sub-components, using the IFS structure.

Figure 1: Vector indices on Cantor Dust.

To describe these sub-components we adopt vec-
tor index notation. For £ € Nlet Iy := {1,..., M}’
Then for E C R™ let Ey := E, and for m =
(mi,...,my) € Iy define Ey, = sm(F) and
Sm = Sm; O ... 0 Sy,. For an illustration of this
notation in the case of the middle-third Cantor
dust see Figure 1. We say I' is hull-disjoint if

R := H;éin/{dist(Hull(Fm), Hull(T,,,/))} > 0.

A key ingredient is the set of vector indices

Lh(F) = {m = (ml, e ,mg) € Uprenly :
diam(T'ry) < h and diam(C 1)) > b}
Heuristically, these indices correspond to a par-
tition of I', where we have subdivided just enough

so that all components have diameter no more
than h. This is depicted in Figure 2.

3 The barycentre rule

We define the barycentre rule for double inte-
grals:

Qtlf) = Z Z

meLy, (F) m’'eLy, (F/)

W Wiy f (Tens Ty ),

(2)
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Figure 2: Partitioning Koch snowflake by
Lo 3(T"). Barcentres zy, are represented by x.

where the weights and nodes are given by wy, :=

HU(Tm) and  @m = [i. w2 dH(z)/H (Tm) for

m € Ly(T"), with analogous definitions for I".
The weights and nodes can be easily computed
in terms of the IFS parameters, see [2, (27-29)].
For the single integral version of (2), see |2,
§3.1]. In all estimates that follow, C' denotes
a constant which depends only on I'.

Theorem 1 (Lipschitz integrands) /2, The-
orem 3.7 If Lo[f] and L1[f] are the Lipschitz
constants of f and V f respectively in Hull(T") x
Hull(T),

Inp[f] = QR (]| < CL[fIRPT for p € {0,1}.

A result for non-diagonal entries of Hausdorff
BEM matrices follows immediately:

Corollary 2 (Smooth Galerkin integrals) /2,

Proposition 5.2/
If R := dist(Hull(T'), Hull(T”)) > 0, then

1+ (kR n/2+1
(o] - Qo) < cr2t AR

4 Singular integrals of Laplace kernels

In Hausdorftf BEM, the diagonal matrix elements
correspond to (1) with T' =T". Because

|®(x,y)] — oo as |z —y| — 0, the rule (2)
cannot be directly applied to (1) in this case.
We will derive a new method for evaluating the
singular (Laplace) component of (2), denoted
®o(x,y) := |r — y|~. Then, to evaluate (1)
with I' = IV, we use a singularity subtraction

technique, by considering the Lipschitz contin-
uous function @, := & — ®y, and splitting the
integral as follows

Irr[®] = Ir r[®o] + Ir r[P.], (3)

and evaluating both components separately.

By exploiting the self-similarity of I, we can
express It 1[®] as a linear function of Ir,, r,, [®o]
form=1,..., M, which leads to

M M
Zm:l Zm’;ém ImeI‘m/ [(I)O]
M 2d—1
1—- Zm:1 Pm
representing a singular integral as a linear com-
bination of smooth integrals. The smooth inte-

grals of (4) can be approximated using (2); we
denote this approximation by Q{{F,O.

Irr[®o] = , (4)

Theorem 3 (Singular Laplace-type integrals)

[2, Corollary 4.7] If T is Hull-disjoint, then
M ~1
Irr[®o] — Qi po| < CR*R™3 (1 -3 pggl—1> .
m=1

5 Approximating (1)

Noting the decomposition (3), Theorem 3 states
that I r[®o] can be estimated with O(h?) error,
provided I' is hull-disjoint.

Since @, € C%(R") \ CL1(R™), Theorem
1 suggests |Ipp[®.] — Ql@yp[q)*ﬂ = O(h). With
further work it can be shown that this is actu-
ally O(h?), when (i) T' is hull-disjoint and (ii)
p1=...= py. Hence using (3) we can approx-
imate It p[®] with O(h?) accuracy (see [2, §5]
for details).

Furthermore, numerical experiments [2, §6]
suggest O(h?) convergence for fractals which vi-
olate either or both of the conditions (i)—(ii).
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