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Wave propagation in unbounded quasiperiodic media, Part 1: the absorbing case
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Abstract

This work is devoted to the numerical resolution
of the Helmholtz equation in a 1D unbounded
quasiperiodic absorbing medium. Using the def-
inition of quasiperiodicity, this problem is lifted
onto a 2D non-elliptic problem with periodic co-
efficients. The periodicity of the new problem
allows to adapt some tools developed for the el-
liptic case [2]. However, the non-elliptic nature
of the 2D PDE makes its mathematical and nu-
merical analysis more delicate.
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1 Introduction

We are interested in the Helmholtz equation

−
(
µθ u

′)′ − ρθ ω2 u = f in R, (1)

where µθ and ρθ have positive upper and lower
bounds. The source term f ∈ L2(R) has a com-
pact support denoted by (−a, a), where a > 0.
We additionally assume that Imω > 0.

Under these assumptions, (1) admits a unique
solution in H1(R). Our objective is to solve (1)
numerically when µθ and ρθ are quasiperiodic,
that is, when there exists θ ∈ (0, π/2) and 1–
periodic coefficients µp, ρp ∈ C 0(R2) such that

µθ(x) = µp(~eθ x) and ρθ(x) = ρp(~eθ x), (2)

where ~eθ = (cos θ, sin θ) – see Figure 1. Note
that without loss of generality, µθ and ρθ could
also be locally perturbed quasiperiodic functions,
where the local perturbation can be supposed to
be compactly supported in (−a, a).

Using the properties of µθ, ρθ and f , we want to
solve (1) by constructing transparent conditions
of Dirichlet-to-Neumann (DtN) type:

±(µθ u
′)(±a) + λ±θ u(±a) = 0, (3)

where the DtN coefficients λ±θ are computed by
solving problems of the following generic form:
Find uθ ∈ H1(R+) such that

∣∣∣∣∣
−
(
µθ u

′
θ

)′ − ρθ ω2 uθ = 0, in R∗+,

uθ(0) = 1.
(4)

The quasiperiodicity of µθ and ρθ can be ex-
ploited to solve (4). The idea to do so is to use
as in [1] that the study of an elliptic quasiperi-
odic PDE comes down to the study of a 2D non-
elliptic periodic PDE.

2 Lifting in a periodic 2D PDE

As the coefficients µθ and ρθ in (4) are defined as
traces of 2D functions along the half-line ~eθ R+,
the main idea is to seek uθ as the trace along the
same line of a 2D function Uθ. Using the chain
rule

[
Uθ(~eθ x)

]′
= (DθU)(~eθ x) withDθ := ~eθ·∇,

and exploiting the periodicity of µp and ρp in
their first variable, it is natural to introduce the
half-guide problem: (y1, y2) ∈ Ω := (0, 1)×R∗+,
∣∣∣∣∣∣∣

−Dθ

(
µpDθUθ

)
− ρp ω2 Uθ = 0 (Ω),

Uθ = ϕ (y2 = 0),

Uθ is periodic wrt. y1,

(5)

where ϕ ∈ C 0(R) is an arbitrary 1–periodic
function that must satisfy ϕ(0) = 1 for the sake
of consistency with uθ(0) = 1.

By Lax-Milgram’s theorem, (5) admits a unique
solution Uθ which belongs to

H1
θ (Ω) :=

{
U ∈ L2(Ω), DθU ∈ L2(Ω)

}
.

Furthermore, uθ is given by uθ(x) = Uθ(~eθ x).

3 Resolution of the half-guide problem

The periodicity of µp, ρp and the well-posedness
of (5) allow one to show that for ϕ ∈ L2(0, 1)
and ` ∈ N, Uθ(ϕ) has the structure:

Uθ(ϕ)(·+ `~e2) = Uθ(P`ϕ)(·) (6)

where P : ϕ 7→ Uθ(ϕ)|y2=1 ∈ L(L2(0, 1)) is the
so-called propagation operator. Provided that
P is known, Uθ(ϕ) can be obtained using the
solutions of local cell problems (C := (0, 1)2)

Uθ(ϕ)(·+ `~e2)|C = E0(P`ϕ) +E1(P`+1ϕ), (7)

where E0 and E1 satisfy the PDE in (5) in C,
with periodic conditions in the y1 direction and
Dirichlet conditions as explained in Figure 3.
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Figure 1: µp(y1, y2) = 1.5 + cos(2πy1) cos(2πy2) (left), its quasiperiodic trace along ~eθ, θ = π/3 (right)
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Figure 2: Solution of (1) for ω = 10 + 0.1i
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Figure 3: Local cell problems

By imposing that Uθ defined by (7) has a direc-
tional derivative which is continous accross the
interface {y2 = 1}, one deduces that P satisfies
the stationary Riccati equation

T 10 P2 + (T 00 + T 11)P + T 01 = 0, (R)

where T jk are local cell DtN operators defined
from the Ej ’s. One shows that P is the unique
solution of (R) with a spectral radius ρ(P) < 1.

Our method is very similar to [2], but its jus-
tification is more delicate due to the non-elliptic
principal part of the operator in (5). In partic-
ular, this non elliptic nature induces a lack of
compactness, and the spectral properties of the
propagation operator P differ than the ones for
the elliptic case (cf [2]).

4 Discretization and numerical results

Along the justification of the method, we also
focus on the Finite Elements discretization of
the 2D local cell problems solved by E0 and E1.

One natural idea to approximate E0 and
E1 is to solve the local cell problems on arbi-
trary unstructured 2D meshes. Although this
approach always gives efficient results, it seemed
more judicious to introduce a quasi-1D approach.
As for the method of characteristics, the main
idea is to exploit the fibered structure of the op-
erator in (5) to solve 1D bounded cell problems,
and to “concatenate” the solutions to get E0 and
E1. This allows to approximate the local DtN
operators T jk and solve the Riccati equation.

The solution Uθ can then be computed cell by
cell (see Figure 4), and the DtN coefficients λ±θ
in (3) can be deduced. Finally, one can recon-
struct u in the whole line (see Figure 2).
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Figure 4: Half-guide and Uθ for ω = 10 + 0.1i
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