
WAVES 2022, Palaiseau, France 1

Surface identification through back-scattering of an electromagnetic planar wave, by
rational approximation

Paul Asensio1,∗, Laurent Baratchart1, Juliette Leblond1, Martine Olivi1, Fabien Seyfert1
1FACTAS, Inria Sophia Antipolis-Méditerranée, Valbonne, France

∗Email: paul.asensio@inria.fr

Abstract

By measuring the scattered electromagnetic field
produced by a plane wave on a smooth object
at various frequencies, we consider the inverse
problem (nondestructive testing) of identifying
the shape and certain physical characteristics of
the object from the recovery of some singular-
ities. When the object is smooth, these singu-
larities coincide with the poles of some transfer
function, that can be estimated by performing
best quadratic rational or meromorphic approxi-
mation. We study the high-frequency behaviour
of the scattered field and the separated contri-
butions of its “optic” and “creeping waves” parts
outside the measured frequency band and their
respective influence in the reconstruction of the
poles of the transfer function.
Keywords: Scattering, Inverse Problems, Shape
Identification, High-frequency, Rational Approx-
imation.

1 Introduction

We consider the scattering of a plane wave by an
object Ω as described in Figure 1. In this back-
scattering configuration, we measure the total
electric field E on a finite band of frequency at
the point X0 ∈ R3 (outside the object) of emis-
sion of the input plane wave. The goal of this
study is to identify properties of the object from
the poles of the transfer function:

F (k) =
Esc(k,X0) · E0

Einc(k,X0) · E0
,

where k is the spatial pulsation (proportional to
the frequency), and where the incident electric
field Einc, which has a direction of propagation
v ∈ R3, and the scattered electric field Esc are
given at X ∈ R3 (outside the object) by:

Einc(k,X) = E0 e
ikv·X , E0 ∈ R3 ,

Esc = E − Einc .

When the object is convex and smooth, the func-
tion F is meromorphic with poles lying in the

upper half-plane. The scattered electric field is
a solution to the Helmholtz equation outside Ω:

∆Esc + k2Esc = 0, (1)
∇ · Esc = 0, (2)

limr→∞(r(X · ∇ − ik)Esc) = 0 , r = |X| , (3)
(Esc + Einc)× ν = 0on ∂Ω , (4)

for the outer normal vector ν to ∂Ω.
In order to perform the rational approxima-

tion of F , we need to describe its behaviour,
hence that of the field Esc, at high frequency
(outside the band of measured frequencies). We
first consider the case in which the object Ω is
a spherical PEC (Perfectly Electric Conductor)
of radius a in the back-scattering orientation
(X = −rv with r > a). In this case, the so-
lution is given by its expansion (Mie series), [2]:

Esc(k,−rv) =
E0

kr

∞∑

n=1

in
(
n+

1

2

)
×

[
Jn(ka)Hn(kr)

Hn(ka)
− i

J ′
n(ka)H

′
n(kr)

H ′
n(ka)

]
,

where the Hn are the spherical Hankel functions
of the second kind and the Jn are the spherical
Bessel functions of the first kind.

As the partial sums of these series converge
slowly when k increases, it is not sufficient to
model the high-frequency behaviour of Esc.

Figure 1: Setting of the scattering by a sphere.
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2 Optical part

In order to study the high frequency behaviour
of F , we consider a well-behaving ansatz under
the form of a so-called Luneberg-Kline series,
[1]. For N > 0:

Esc(k,X) =
N∑

n=0

An(X)

(ik)n
eikS(X)+o

(
1

kN

)
. (5)

By substituting this form into (1) to (4), we ob-
tain the eikonal equation (6) and an infinite list
of transport equations (7) that allow us to com-
pute the (R-valued) phase S and the sequence
of (R3-valued) coefficients (An)n∈N:

|∇S|2 = 1, (6)
(∆S + 2∇S · ∇)An = −∆An−1. (7)

using the boundary conditions that for all Y ∈
∂Ω:

A0(Y )× Y = −E0 × Y,

∀n ∈ N∗, An(Y )× Y = 0,

∀n ∈ N, ∇S ·An(Y ) = −∇ ·An−1(Y ),

S(Y ) = v · Y.

Using these equations, we can compute the
successive terms of the Luneberg-Kline series for
a PEC. In the back-scattering case, the first
terms are given by:

S = (r − 2a) ,

A0 = − a

2r − a
E0,

A1 = −2
(r − a)2

(2r − a)3
E0,

A2 = 2
(r − a)(2r2 − 4ra+ 3a2)

(2r − a)5
E0.

As we will show in section 4, this asymptotic
expansion is not precise enough for our purpose
and we thus consider, in the next section, terms
that were neglected in the Luneberg-Kline se-
ries.

3 Creeping wave

In order to deeper understand the links between
Luneberg-Kline expansions and Mie series, we
apply Watson transformation [3,4] to the latter,
as a way to transform the sum into an integral

using the residue theorem. We show that, far
from the spherical object Ω (r large):

Esc(k,−rv) = P (ka)
exp(ikr)

kr
E0,

P (ka) = Pc(ka) + Po(ka),

where the optical part Po has the same high-
frequency behaviour as the Luneberg-Kline se-
ries (5), and the creeping wave part Pc has the
following behaviour:

Pc(ρ) ∼
τ4ei

π
3

β1Ai(−β1)2
exp

(
iπρ− e−iπ

6 τπβ1

)
,

where τ = τ(ρ) =
(ρ
2

)1/3 and β1 is the first zero
of the derivative Ai′ of the Airy function Ai.

4 Numerical comparison

As Pc exponentially decreases when k goes to
infinity, it seems negligible with respect to Po.
Nevertheless, for a study of the compared im-
portance of this terms when dealing with finite
frequencies, we choose a frequency of 5 GHz for
a sphere of radius a = 0.15/2 at a distance r =
1. Our computations show that the three optics
terms represent respectively 86.11%, 4.87% and
0.01% of the field, while the creeping wave term
represents 7.55% of the field. This confirms that
in order to reconstruct the poles of the transfer
function, we will need to use the creeping wave
part of the scattered field, even if it is negligible
w.r.t. the optic part at high-frequency.
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