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Abstract

We consider acoustic waves propagating in a
so-called transmission layer containing a perfo-
rated plate and inviscid �uid. The plate behav-
ior is in�uenced by a strong heterogeneity of the
elasticity in the form of periodically distributed
holes and soft inclusions which may induce an-
tiresonance e�ects well known in acoustic meta-
materials. As a particular novelty, we study
acoustic perturbations of the permanent �ow
interacting with the plate modeled using the
Reissner-Mindlin theory. The modelling based
on the homogenization leads to a 3D-to-2D model
reduction of the layer which, in the limit, is rep-
resented by an acoustic metasurface. An e�-
cient method is proposed to compute frequency-
dependent homogenized coe�cients involved in
the limit model which are responsible for a strong
wave dispersion.

Keywords: acoustic transmission, periodic ho-
mogenization, �uid-structure interaction, acous-
tic metasurface

1 Introduction

We consider a transmission layer Ωδ ⊂ R3 of the
thickness δ = κε with a given �xed κ > 0, being
introduced via its midsurface Γ0, see Fig. 1. The
solid structure (an elastic perforated plate) Σε

is embedded in the layer, such that the acoustic
�uid occupies domain Ω∗ε = Ωδ \ Σε, The scale
parameter ε ∼ δ characterizes the microstruc-
ture sizes (holes and soft elastic inclusions, the
resonators). whereby ε = δ/κ, with a given
�xed κ > 0.

The acoustic harmonic wave with the fre-

Figure 1: Thin layer with a perforated plate

quency ω propagating in the layer is described
by the acoustic potential pε in the �uid Ω∗ε, the
corresponding wave in the elastic body is de-
scribed by the displacement �eld uε de�ned in
Σε. These �elds satisfy the following equations
and transmission conditions on the solid-�uid
interface ∂∗Σε, where σ(uε) is the stress,

c2∇2pε + ω2pε−(θiω∂wp
ε + τ∂2

wwp
ε) = 0 in Ω∗ε ,

∇ · σ(uε) + ω2ρuε = 0 in Σε ,

iωn · uε = n · ∇pε
n · σ(uε) = iωρ0p

εn

}
on ∂∗Σε ,

where θ = (τ + 1)/2, with τ = 3 in 3D, and the
derivatives ∂wp = w · ∇p and ∂2

ww = ∂w(∂wp)
depend on the steady advection �eldw .

The elastic structure is represented by the
Reissner-Mindlin (RM) plate featured hetero-
geneity, such that it is generated by the rep-
resentative cell Ξ =]0, 1[2⊂ R2 as a periodic
lattice, where Ξ = ΞS ∪ Ξ∗ ∪ ∂Ξ. The solid
part involves the matrix and the soft inclusions,
as treated in [1]. This latter aspect extends
the work published in [2], such that vibroacous-
tic problem is featured by the large contrast in
the di�erential operator associated with the RM
plate equation. The weak formulation is consti-
tuted by the following variational equalities gov-
erning pε ∈ H1(Ω∗ε) and (uε,θε) ∈ (H1

0 (Ω))5,

c2

∫

Ω∗ε
∇pε · ∇qε − ω2

∫

Ω∗ε
pεqε

+iωθ

∫

Ω∗ε
(qε∂wp

ε − ∂wqεpε)− τ
∫

Ω∗ε
∂wq

ε∂wp
ε =

− iωc2



∫

Γ±ε

gε±qε dΓ +

∫

∂Σε

n ·U ε(uε,θε)︸ ︷︷ ︸
R-M plate kin.

qε dΓ


 ,

for all q ∈ H1(Ω∗ε), where U ε = uε − εh̄ζθε,
ζ ∈ [−1/2,+1/2] determines the displacement
within the plate for the transversal position εh̄ζ,
being given by the plate kinematics de�ned in
terms of the midsurface displacements u = (u , u3),
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and rotations θ, satisfying

ω2

(∫

Γε

ρuε · v ε +
h2

12

∫

Γε

ρθε ·ψε
)

− h2

12

∫

Γε

[IEε∇Sθε] : ∇Sψε −
∫

Γε

[IEε∇Suε] : ∇Sv ε

−
∫

Γε

[S ε(∇uε3 − θε)] · (∇vε3 −ψε)

=
1

εh̄

∫

Γε

(f ε(pε) · v ε +mε(pε) ·ψε)

1

εh̄

∫

∂◦Γε

(
f
∂,ε

(pε) · v ε +

∫

∂◦Γε

m∂,ε(pε) ·ψε
)
,

for all (v ε,ψε) ∈ (H1
0 (Ω))5. The r.h.s. terms

represent plate loading by pε on its surface.

2 Homogenized transmission layer

Pursuing analogical upscaling procedure based
on the unfolding homogenization, as reported
in [2], autonomous cell problems de�ned in Y ∗

and ΞS , see Fig. 2, are solved for characteris-
tic responses. These are needed to establish the
macroscopic problem involving homogenized co-
e�cients. In the context of a global acoustic
problem, the homogenized layer model presents
a Dirichlet-to-Neumann operator which links the
acoustic �uxes g0 ≈ ∂nP̂ to the the pressure
jump ∆P̂ , thus representing transmission con-
ditions on Γ0, which involve internal variables
(p0,u0,θ0) satisfying the �uid equation,
∫

Γ0

[
(A∇xp0 + iωg0Bw) · ∇xq0 − ω2(ζ∗ +Mw)p0q0

]

+ iωθ

∫

Γ0

q0
(
iωTwg

0 + W̄ · ∇xp0
)

+ iω

∫

Γ0

q0∆G1

+ iω

∫

Γ0

(
q0h̄H : ∇Sxu0 +∇xq0 ·Du0

)
= 0 ,

∀q0 ∈ H1(Γ0), the plate equation

∫

Γ0

(SH(∇xu0
3 − θ0)) · (∇xv3 − ϑ)

+
h2

12

∫

Γ0

(IEH∇Sxθ0) : ∇Sxϑ+

∫

Γ0

(IEH∇Sxu0) : ∇Sxv

− iωρ0

∫

Γ0

[
p0H : ∇Sxv +

1

h̄
v ·
(
D∇p0 + iωCg0

)]

− ω2

∫

Γ0

(
(Mu0) · v +

h2

12
(M̃θ0) · ϑ

)
= 0 ,

satis�ed ∀(v ,ϑ) ∈ (H1
0 (Γ0))5 and a coupling

condition (for a given scale ε0 > 0)
∫

Γ0

ψ
(
iωC · u0 − iωFg0

)
=

1

ε0

∫

Γ0

ψ∆P̂

Figure 2: Representative cell Y ⊂ R3: Fluid
part Y ∗ = Y \ S. The solid part S represented
by the plate ΞS ⊂ Ξ ⊂ R2 with soft inclusions
Ξc and a sti�er �matrix� Ξm, ΞS = Ξm ∪ Ξc.

∀ψ ∈ L2(Γ0), which closes the system. Due to
the strong heterogeneity of the plate [1], the
derived macroscopic model of the layer repre-
sented by midsurface Γ0 involves ω-dependent
coe�cients which can change their signs, thus,
giving rise some very strong dispersion prop-
erty of the �metasurface�. This is illustrated
in Fig. 3 showing acoustic �elds in a waveguide
for two frequencies ω1, ω2. For ω2 the antires-
onance e�ect suppress signi�cantly wave prop-
agation through the perforated plate. Research
supported by project GACR 21-16406S.

Figure 3: E�ects of suppressing the acoustic
�eld for some frequencies (here for ω2) induc-
ing the metasurface behaviour.
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