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Abstract

We consider acoustic waves propagating in a

so-called transmission layer containing a perfo-

rated plate and inviscid fluid. The plate behav-

ior is influenced by a strong heterogeneity of the

elasticity in the form of periodically distributed

holes and soft inclusions which may induce an-

tiresonance effects well known in acoustic meta-

materials. As a particular novelty, we study

acoustic perturbations of the permanent flow

interacting with the plate modeled using the

Reissner-Mindlin theory. The modelling based

on the homogenization leads to a 3D-to-2D model
reduction of the layer which, in the limit, is rep-

resented by an acoustic metasurface. An effi-

cient method is proposed to compute frequency-

dependent homogenized coefficients involved in

the limit model which are responsible for a strong
wave dispersion.
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1 Introduction

We consider a transmission layer Q5 C R3 of the
thickness § = »e with a given fixed s > 0, being
introduced via its midsurface ['g, see Fig. 1. The
solid structure (an elastic perforated plate) %¢
is embedded in the layer, such that the acoustic
fluid occupies domain Q*¢ = Q; \ 3¢, The scale
parameter € ~ § characterizes the microstruc-
ture sizes (holes and soft elastic inclusions, the
resonators). whereby ¢ = §/s, with a given
fixed » > 0.

The acoustic harmonic wave with the fre-

Qe

Figure 1: Thin layer with a perforated plate

quency w propagating in the layer is described
by the acoustic potential p® in the fluid Q*¢, the
corresponding wave in the elastic body is de-
scribed by the displacement field %4° defined in
3. These fields satisfy the following equations
and transmission conditions on the solid-fluid
interface 0,%°, where o (u®) is the stress,

V2D + wp —(0iwdyp® + 702,p°) =0 in Q*
V-o(u®) +w’pu® =0 in ¥°,
: L€ — . c
wn " VP on 0,3°
n-o(u®) = iwppn

where 6 = (7 +1)/2, with 7 = 3 in 3D, and the
derivatives Opp = w - Vp and 92, = 9y (0wp)
depend on the steady advection fieldw.

The elastic structure is represented by the
Reissner-Mindlin (RM) plate featured hetero-
geneity, such that it is generated by the rep-
resentative cell = =]0,1[>2C R? as a periodic
lattice, where = = Z¢ U Z* U 9=. The solid
part involves the matrix and the soft inclusions,
as treated in [1]. This latter aspect extends
the work published in [2], such that vibroacous-
tic problem is featured by the large contrast in
the differential operator associated with the RM
plate equation. The weak formulation is consti-
tuted by the following variational equalities gov-
erning p° € H'(Q*) and (u?, 6°) € (H}())?,
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for all ¢ € H'(Q*), where U® = u® — ch(6°,
¢ € [-1/2,41/2] determines the displacement
within the plate for the transversal position eh(,
being given by the plate kinematics defined in
terms of the midsurface displacements u = (w, us),
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and rotations 6, satisfying
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for all (v°,%°) € (H}(Q))®. The rh.s. terms
represent plate loading by p® on its surface.
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2 Homogenized transmission layer

Pursuing analogical upscaling procedure based
on the unfolding homogenization, as reported
in [2]|, autonomous cell problems defined in Y*
and =g, see Fig. 2, are solved for characteris-
tic responses. These are needed to establish the
macroscopic problem involving homogenized co-
efficients. In the context of a global acoustic
problem, the homogenized layer model presents
a Dirichlet-to-Neumann operator which links the
acoustic fluxes ¢ = O, P to the the pressure
jump AP, thus representing transmission con-
ditions on I'g, which involve internal variables
(p°, u®, 8°) satisfying the fluid equation,
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Vg € H'(I'y), the plate equation
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satisfied V(v,9) € (H}(I'p))® and a coupling
condition (for a given scale g9 > 0)
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Figure 2: Representative cell Y C R3: Fluid
part Y* =Y \ S. The solid part S represented
by the plate E5 C = C R? with soft inclusions
Zc and a stiffer “matrix” Z,,, Z2¢ = Z,, U Z,.

Vi) € L?(I'g), which closes the system. Due to
the strong heterogeneity of the plate [1], the
derived macroscopic model of the layer repre-
sented by midsurface I'g involves w-dependent
coeflicients which can change their signs, thus,
giving rise some very strong dispersion prop-
erty of the “metasurface”. This is illustrated
in Fig. 3 showing acoustic fields in a waveguide
for two frequencies wq,ws. For wo the antires-
onance effect suppress significantly wave prop-
agation through the perforated plate. Research
supported by project GACR 21-16406S.
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Figure 3: Effects of suppressing the acoustic
field for some frequencies (here for wy) induc-
ing the metasurface behaviour.
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