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Abstract

We are interested in finding solutions to wave
equations posed in materials with rapidly vary-
ing coefficients, and time harmonic sources. For
these problems, direct discretization is prohibitively
costly, and instead multiscale methods are used.
There are several multiscale methods, e.g. the
popular heterogeneous multiscale methods (HMM)
[4, 5], that directly discretize in the frequency
domain. In this work we instead start in the
time-domain and combine a HMM method for
the wave equation [2, 3] with the newly intro-
duced WaveHoltz method, [1]. Each WaveHoltz
iteration marches the wave equation towards the
time-periodic Helmholtz solution. WaveHoltz
has many advantages compared to traditional
Helmholtz solvers: it is positive definite, has
a bounded condition number, is memory lean
and can be parallelized, etc. All of these advan-
tages will carry over to the multiscale method
we present here. In addition our approach also
eliminates the boundary errors present in other
multiscale methods for the Helmholtz equation,
where elliptic micro problems are used.
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1 Introduction

Consider the Helmholtz equation on a smooth
domain Ω and at frequency ω,

∇ · (A(x)∇u) + ω2u = s(x), x ∈ Ω.

The WaveHoltz method approximates the solu-
tion to this equation (for Dirichlet or Neumann
boundary conditions) by iterating the equation,
vn+1 = Πvn, v0 ≡ 0, where

Πv =
2

T

∫ T

0

(
cos(ωt)− 1

4

)
w(x, t) dt, T =

2π

ω
,

where T is the period, and w solves

wtt = ∇ · (A(x)∇w)− s(x) cos(ωt), x ∈ Ω,

w(x, 0) = vn(x), wt(x, 0) ≡ 0.

The WaveHoltz method thus finds the solution
to the Helmholtz equation by repeatedly solving
the wave equation [1].

The methods we propose work in multi-D
but for brevity, we only consider the 1D case,

(Aε(x)ux)x + ω2u = s(x), x ∈ [a, b]. (1)

The source s is independent of ε, but the co-
efficient Aε(x) is assumed to vary rapidly with
smallest scale ε ≪ 1, and has a scale separa-
tion property. We can for instance take locally
periodic functions Aε(x) = A(x, x/ε), where A
is 1-periodic in the second argument. Then the
solution u can be expanded as

u(t, x) = u0(t, x) + εu1(t, x, x/ε) +O(ε2),
where u0 is independent of ε and u1 is locally
periodic in x. Here we find u0 by applying the
WaveHoltz method to the HMM discretization
of the problem

wtt = (Aε(x)ux)x− s(x) cos(ωt), x ∈ [a, b].

We use the HMM method in [2], which solves
the wave equation by discretizing the domain
into N +2 points with uniform spacing H. The
solution is evolved using the second order cen-
tered differences in time and space:

Wn+1
j = 2Wn

j −Wn−1
j +

K2

H

(
Fj+ 1

2
− Fj− 1

2

)

−K2s(Xj) cos(ωt
n),

with initial data W 0
j = v(Xj). Here

Fj+ 1
2
= F

(
xj+ 1

2
, Pj+ 1

2

)
, Pj+ 1

2
=

1

H

(
Wn

j+1 −Wn
j

)

The function F represents the output from a
microscale solver which evolves the wave-equation
on a dense grid spanning x ∈ [−η, η] for η ≪ H,
and t ∈ [−τ, τ ] for τ ≪ K. This microscale
solver also uses a centered difference scheme with
grid spacing h and timestep k:

wℓ+1
i = 2wℓ

i − wℓ−1
i +

k2

h

(
fi+ 1

2
− fi− 1

2

)
,

fi+ 1
2
=

1

h

(
A(Xj+ 1

2
+ xi+1)w

ℓ
i+1 −A(Xj+ 1

2
+ xi)w

ℓ
i

)
,
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Figure 1: Convergence of the numerical flux pro-
duced by the micro-scale solver to the homog-
enized flux; for p = 1, q = 5 we see 7th order
convergence (red line).

with initial data w0
i = xiPj+ 1

2
. The compu-

tational domain of the micro-solver is [−η′, η′]
where η′ = η + τ

√
maxAε. The size of this

patch follows from domain of dependence con-
siderations, and guarantees that the microscale
boundary conditions do not influence the solu-
tion in [−τ, τ ] × [−η, η]. Note that both η and
τ are chosen to be of size O(ε) which makes the
computational cost of the microscale solver vir-
tually independent of ε.

Using the micro-scale solution, the quantity
Fj+ 1

2
is the average:

Fj+ 1
2
← 4

ητ

∫ τ

−τ

∫ η

−η
w(x, t)K (x/η)K (t/τ) dx dt,

where K = Kp,q is a high-order local averaging
kernel derived in [2]. Here p and q control the
approximation order of the kernel.

Note that, in the micro-solver, the forcing
term s(x) cos(ωt) can be excluded as it is ap-
proximately constant over [−τ, τ ]× [−η, η], and
any constant solution will result in a net-zero
contribution to the integral. A detailed conver-
gence analysis following [1, 2] will be presented
at the conference.

Numerical Results

We apply this method to problem (1) on [−0.5, 0.5]
with, Aε(x) = 1.1+sin(2πx/ε), s(x) = 170ωxe−144x2 ,
ω = 15, and ε = 10−5, and homogeneous bound-
ary conditions. For this problem, we have a ho-
mogenized solution which represents the O(1)
terms of the expansion in ε; this solution is a
solution to the same problem with A ≡

√
21/10.

Figure 2: The red line represents the homoge-
nized solution, and the black diamonds repre-
sent the solution found by WaveHoltz-HMM.

We first confirm the rate of convergence of
the kernels in Fig. 1. Then we use the HMM
solver with N = 62 interior points for the macro-
solver, and 256 points for the micro-solver. We
choose η = τ = 10ε, and the seventh order
kernel, K1,5. This solver drives the WaveHoltz
method and the results are presented in Fig. 2.
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