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Abstract

We use finite element methods with Hermite and
Lagrange interpolation polynomials to solve the
wave equation and compare the performance of
these methods. When the same time-step is
used for both we see comparable accuracy and
computation time. When the time-step is cho-
sen according to the stability properties of the
methods we see that Hermite finite elements can
produce a numerical solution up to twice as fast.
Keywords: Hermite interpolation, Lagrange
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1 Hermite finite elements

We use rectangular elements in 2D with Lan-
grange and Hermite tensor product interpola-
tion polynomials. In particular, we use the ex-
isting implementation in deal.II [1] for Lagrange
polynomials, and define a basis of Hermite inter-
polation polynomials [2] fi, gi for i = 0, 1, . . . , r
of degree 2r + 1 on the 1D reference interval
[0, 1] as follows:

dj

dxj
[fi(x)]x=0 = 4ii!δi,j ,

dj

dxj
[gi(x)]x=0 = 0,

dj

dxj
[fi(x)]x=1 = 0,

dj

dxj
[gi(x)]x=1 = 4ii!δi,j .

In the above the polynomials fi correspond to
derivative degrees of freedom at x = 0, and gi
correspond to degrees of freedom at x = 1. For
Hermite polynomials we enforce continuity of all
derivatives up to order r across element bound-
aries, which leads to fewer degrees of freedom in
total for the same polynomial order. These ele-
ments are implemented in the deal.II framework
to allow a quick comparison with Lagrange ele-
ments.
One drawback of Hermite finite elements is the
difficulty in enforcing derivative continuity on
unstructured meshes. However the intention is
to use these elements in an immersed bound-
ary framework where a regular Cartesian grid
can be used with a more general domain shape.
Another drawback that occurs with the higher

order elements is the basis functions do not ap-
proximate orthogonality, so the mass matrix is
not diagonally dominated and mass-lumping can-
not be applied.
For all numerical experiments we consider the
wave equation on the spatial domain Ω = [0, 3]2

and time period [0, 2) :




utt = uxx + uyy, (x, y, t) ∈ Ω× (0, 2),
u(x, y, 0) = sin (πx) sin (πy), (x, y) ∈ Ω,
ut(x, y, 0) = 0, (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, 2),

where ∂Ω denotes the boundary of Ω and the
exact solution is

u(x, y, t) = sin (πx) sin (πy) cos
(√

2πt
)
.

We use the second order leapfrog method to dis-
cretise utt directly, and initialise the system with
the exact solution at times t = 0 and t = δt.

2 Initial conditions

The first row of the tables gives the dimensions
of the spatial grid (16 denotes a 16 × 16 grid),
and the first column gives the polynomial degree
of the finite element basis.
Lagrange FEM:
Initial L2-errors over Ω:

N = 16 N = 32 N = 64

p = 1 2.8588e-02 6.9298e-03 1.7189e-03
p = 3 5.2059e-05 3.1889e-06 1.9828e-07
p = 5 3.7683e-08 5.8017e-10 9.0409e-12
Hermite FEM:
Initial L2-errors over Ω:

N = 16 N = 32 N = 64

p = 1 2.8588e-02 6.9298e-03 1.7189e-03
p = 3 2.0817e-04 1.4095e-05 9.0036e-07
p = 5 1.0568e-07 1.5650e-09 2.4098e-11

Calculating order of accuracy from these results
indicates that both methods are (p+ 1)th order
accurate in projecting initial conditions.

3 Fixed CFL number

We first consider the results when a CFL num-
ber of 0.05 is used for all simulation set-ups.
This value was found to be numerically stable
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for both methods up to polynomial degree p =
5. The L2-errors after the final time-step and
CPU time in seconds are shown below:
Lagrange FEM:
Final L2-errors over Ω:

N = 16 N = 32 N = 64

p = 1 8.7399e-02 2.4609e-02 6.2750e-03
p = 3 4.7439e-04 1.2220e-04 3.0538e-05
p = 5 4.7049e-04 1.2200e-04 3.0537e-05

Simulation times (CPU seconds):
N = 16 N = 32 N = 64

p = 1 1.7134e+00 1.1035e+01 7.9023e+01
p = 3 3.0569e+00 1.8632e+01 1.3382e+02
p = 5 6.2698e+00 3.8880e+01 2.7534e+02
Hermite FEM:
Final L2-errors over Ω:

N = 16 N = 32 N = 64

p = 1 8.7399e-02 2.4609e-02 6.2750e-03
p = 3 5.0804e-04 1.2268e-04 3.0548e-05
p = 5 4.7049e-04 1.2200e-04 3.0537e-05

Simulation times (CPU seconds):
N = 16 N = 32 N = 64

p = 1 2.1218e+00 1.2389e+01 8.7286e+01
p = 3 3.4353e+00 2.0078e+01 1.4209e+02
p = 5 6.4353e+00 4.0642e+01 2.9798e+02

We see that the error at the final time is dom-
inated by the time-stepping error, which is sec-
ond order. We also note that the errors at the fi-
nal time and the computation time are very sim-
ilar for Lagrange and Hermite methods. Inter-
estingly this is despite Hermite having fewer de-
grees of freedom, indicating more work is needed
to find a good preconditioner for the mass ma-
trix.

4 Relaxed CFL numbers

As found in [3], it is possible to take significantly
larger time-steps for higher order Hermite finite
elements than Lagrange while maintaining nu-
merical stability over time. The CFL numbers
used for the different methods and polynomial
degrees are chosen to be below but not at the
stability limit, and are listed below to three sig-
nificant figures:

Lagrange Hermite
p = 1 0.406 0.367
p = 3 0.0979 0.184
p = 5 0.0460 0.122

All methods remained stable with these CFL
numbers. The Lagrange polynomials were tested
with a CFL of 0.12 and became unstable for

p = 3, 5. The difference in CFL for p = 1 was
purely due to using an approximate formula to
generate CFL numbers, and in practice a Her-
mite method would not be used with p = 1.
The final errors for these experiments were again
dominated by the time-step errors, which led to
worse accuracy for Hermite than Lagrange due
to larger time-steps. Methods to improve the
accuracy of the Hermite system over time exist
but are beyond the scope of this short paper.
Lagrange FEM:
Simulation times (CPU seconds):

N = 16 N = 32 N = 64

p = 1 2.4382e-01 1.4153e+00 1.0287e+01
p = 3 1.7566e+00 9.8094e+00 6.8715e+01
p = 5 6.7261e+00 4.1602e+01 2.9929e+02
Hermite FEM:
Simulation times (CPU seconds):

N = 16 N = 32 N = 64

p = 1 5.6322e-01 1.7037e+00 1.2634e+01
p = 3 1.4320e+00 6.7186e+00 4.2364e+01
p = 5 3.3575e+00 1.9046e+01 1.3433e+02

The larger time-steps that Hermite elements al-
low produce a significant improvement in com-
putation time compared to Lagrange. This in-
dicates that Hermite elements can offer a sig-
nificant performance benefit over Lagrange for
simulations over long time periods due to the
larger maximum stable time-step.
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