Wave propagation in unbounded quasiperiodic media, Part 2: the non-absorbing case

Pierre Amenoagbadji¹, Sonia Fliss¹, Patrick Joly¹ ¹POEMS (UMA-ENSTA Paris-IPP), Palaiseau, France *Email: patrick.joly@inria.fr

Abstract

We are interested in the Helmholtz equation in a 1D unbounded quasiperiodic medium (see Part 1 for the absorbing case). We propose a numerical procedure to compute the outgoing solution assuming that a limiting absorption principle holds. The problem is lifted onto a 2D non-elliptic problem with periodic coefficients. However, the method has to be adapted: the Dirichlet-to-Neumann (DtN) coefficients are replaced by Robin-to-Robin (RtR) ones, and with respect to the non-absorbing csase, a condition has to be added to characterize the propagation operator.

Keywords: quasiperiodicity, waveguides

1 Problem setting

We are interested in the Helmholtz equation with frequency $\omega \in \mathbb{R}$:

$$-(\mu_{\theta} u')' - \rho_{\theta} \omega^2 u = f \quad \text{in} \quad \mathbb{R}, \qquad (1)$$

where $f \in L^2(\mathbb{R})$ has a compact support (-a, a), a > 0, and where μ_{θ} and ρ_{θ} are **quasiperiodic**, that is, there exists $\theta \in (0, \pi/2)$ and 1-periodic functions μ_p , $\rho_p \in \mathscr{C}^0(\mathbb{R}^2)$ such that

$$\mu_{\theta}(x) = \mu_p(x \, \vec{e}_{\theta}) \quad \text{and} \quad \rho_{\theta}(x) = \rho_p(x \, \vec{e}_{\theta}).$$
(2)

The well-posedness of (1) is unclear. One expects that the physical solution u, if it exists, may not belong to $H^1(\mathbb{R})$ due to a lack of decay at infinity. In this case, one needs a so-called radiation condition that imposes the behaviour at infinity. Such a condition can be obtained in practice using the limiting absorption principle, which consists in (i) adding some absorption to the problem, and (ii) studying the limit of the solution u as $\Im m \omega^2 \to 0$.

2 Mathematical issues

Understanding the limit process described above is closely related to the spectral analysis of the self-adjoint differential operator in $L^2(\mathbb{R}; \rho_{\theta} dx)$:

$$\begin{vmatrix} H_{\theta}u &= -\frac{1}{\rho_{\theta}} \left(\mu_{\theta} \ u' \right)', \\ D(H_{\theta}) &= \left\{ u \in H^{1}(\mathbb{R}), \ (\mu_{\theta} \ u')' \in L^{2}(\mathbb{R}) \right\}. \end{aligned}$$

When μ_{θ} and ρ_{θ} are periodic ie. when $\tan \theta \in \mathbb{Q}$, Floquet theory shows that the spectrum $\sigma(H_{\theta})$ is purely continuous with a band structure.

When $\tan \theta$ is irrationnal, $\sigma(H_{\theta})$ has an absolutely continuous part as in the periodic case, but may also have a point part, and a even a singular continuous part that may contain a *Cantor set* (that is, a closed set with no isolated points and whose complement is dense, see [2] for related results).

Indeed, there is no problem with the limiting absorption principle when ω^2 is not in $\sigma(H_{\theta})$. Of course, it cannot hold when ω^2 is an eigenvalue de H_{θ} (we exclude this case in the following). In all the other cases, the question is still open.

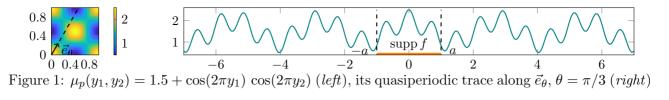
3 A solution approach

We propose a numerical procedure assuming that the limiting absorption principle holds. One preliminary step is to notice that if $\Im \mathfrak{m} \omega^2 > 0$, then u can be computed by solving problems of the generic form: Find $u_{\theta} \in H^1(\mathbb{R}_+)$ such that

$$\begin{vmatrix} -(\mu_{\theta} \ u_{\theta}')' - \rho_{\theta} \ \omega^2 \ u_{\theta} = 0, & \text{in } \mathbb{R}^*_+, \\ u_{\theta}(0) = 1. \end{cases}$$
(3)

Since μ_{θ} , ρ_{θ} are traces of periodic functions along $\vec{e}_{\theta} \mathbb{R}$, the idea is to interpret u_{θ} as the trace along the same line of U_{θ} , the solution of a 2D periodic problem in $(0, 1) \times \mathbb{R}_+$ with a Dirichlet condition on $(0, 1) \times \{0\}$. The periodicity of the half-guide problem allows us to compute U_{θ} by solving **Dirichlet local cell problems** and by computing the propagation operator \mathcal{P} which is the unique solution of a stationary Riccati equation with a spectral radius $\rho(\mathcal{P}) < 1$ (more details can be found in Part 1).

The next step then consists in passing to the limit $\Im \mathfrak{m} \omega^2 \to 0$ in the method presented above. Doing so however raises several difficulties. First of all, for $\Im \mathfrak{m} \omega^2 = 0$, considering the Dirichlet half-line problem (3) may introduce artificial edge resonances. More importantly, we have shown that **the Dirichlet local cell problems** are ill-posed for most frequencies (i.e. outside an interval). These lead us to introduce the



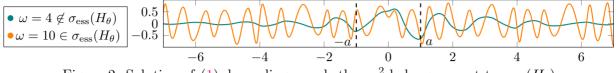


Figure 2: Solution of (1) depending on whether ω^2 belongs or not to $\sigma_{\rm ess}(H_{\theta})$

Robin half-line problem instead of (3):

$$-(\mu_{\theta} \ \widetilde{u}_{\theta}')' - \rho_{\theta} \ \omega^{2} \ \widetilde{u}_{\theta} = 0, \quad \text{in } \mathbb{R}_{+}^{*},$$

$$[\mu_{\theta} \ \widetilde{u}_{\theta}'](0) + \mathrm{i} \ \omega \ z \ \widetilde{u}_{\theta}(0) = 1,$$
(4)

with $\mathfrak{Re} z > 0$, so that the associated operator has no discrete spectrum. We look for solutions \widetilde{u}_{θ} as $\widetilde{u}_{\theta}(x) = \widetilde{U}_{\theta}(x \, \vec{e}_{\theta})$, where \widetilde{U}_{θ} satisfies for $(y_1, y_2) \in \Omega := (0, 1) \times \mathbb{R}^*_+$ the problem

$$-D_{\theta} \left(\mu_p D_{\theta} \widetilde{U}_{\theta} \right) - \rho_p \omega^2 \widetilde{U}_{\theta} = 0 \quad (\Omega),$$

$$\sin \theta \, \mu_p D_{\theta} \widetilde{U}_{\theta} + i \, \omega \, z \, \widetilde{U}_{\theta} = \varphi, \quad (y_2 = 0), \quad (5)$$

$$\widetilde{U}_{\theta} \text{ is periodic wrt. } y_1$$

with $\varphi \in \mathscr{C}^0(\mathbb{R})$, an arbitrary 1-periodic function that must satisfy $\varphi(0) = 1$ for the sake of consistency with the condition satisfied by \tilde{u}_{θ} .

(1) If ω^2 is not in $\sigma_{\text{ess}}(H_{\theta})$, the essential spectrum of H_{θ} , then (5) is well-posed in $H^1_{\theta}(\Omega) := \{U, D_{\theta}U \in L^2(\Omega)\}$, and the procedure is similar to the absorbing case. More precisely,

$$\widetilde{U}_{\theta}(\varphi)(y_1, y_2 + \ell) = \widetilde{U}_{\theta}(\widetilde{\mathcal{P}}^{\ell}\varphi)(y_1, y_2) \quad (6)$$

where the propagation operator $\widetilde{\mathcal{P}}$ is defined by

$$\widetilde{\mathcal{P}}\varphi = \left[\sin\theta\,\mu_p\,D_\theta\widetilde{U}_\theta(\varphi) + \mathrm{i}\omega z\,\widetilde{U}_\theta(\varphi)\right]|_{y_2=1}.$$

In this case, \widetilde{U}_{θ} can be computed cell by cell in terms of the solutions E^0, E^1 of **Robin lo**cal cell problems, i.e. the PDE in (5) completed with periodic conditions in the y_1 direction and Robin conditions (*cf* Figure 3). For any $\omega^2 \in \mathbb{R}$, these local cell problems are wellposed, contrary to the Dirichlet ones. One can show that $\widetilde{\mathcal{P}}$ is the unique solution of a Riccati system with a spectral radius $\rho(\widetilde{\mathcal{P}}) < 1$.

(2) If $\omega^2 \in \sigma_{ess}(H_{\theta})$, then (5) is no longer well-posed in $H^1_{\theta}(\Omega)$. In other terms, the outgoing solution can oscillate without vanishing until

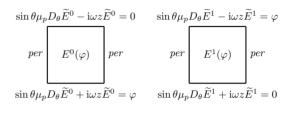


Figure 3: Local cell problems

infinity. In order to construct the outgoing solution, we use the same procedure as in the previous case by computing \tilde{E}^0 , \tilde{E}^1 , and by solving the Riccati system. To allow oscillations at infinity for the outgoing solution, one has to look for a solution of the Riccati system of spectral radius equal to 1 (see (6)). However, the Riccati system may admit an infinity of such solutions. To recover uniqueness and characterize the outgoing propagation operator, we adapt the spectral condition proposed in [1]. This condition, obtained by limiting absorption for the classical Helmholtz equation, is linked to the energy flux of the outgoing solution.

Once $\widetilde{\mathcal{P}}$ is obtained, using the solutions of the local cell problems, one can deduce \widetilde{U}_{θ} cell by cell and then, provided that ω^2 is not in the discrete spectrum of H_{θ} , compute coefficients $\lambda_{\theta}^{\pm} \in \mathbb{C}$ so that

$$\pm (\mu_{\theta} u')(\pm a) + \lambda_{\theta}^{\pm} u(\pm a) = 0$$

are transparent conditions for (1).

References

- S. Fliss, P. Joly, and V. Lescarret, A DtN approach to the mathematical and numerical analysis in waveguides with periodic outlets at infinity, *Pure and Applied Anal*ysis (2021)
- [2] L.H. Eliasson, Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation, Commun.Math. Phys. (1992)