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Wave propagation in unbounded quasiperiodic media, Part 2: the non-absorbing case
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Abstract

We are interested in the Helmholtz equation in a
1D unbounded quasiperiodic medium (see Part
1 for the absorbing case). We propose a nu-
merical procedure to compute the outgoing so-
lution assuming that a limiting absorption prin-
ciple holds. The problem is lifted onto a 2D
non-elliptic problem with periodic coefficients.
However, the method has to be adapted: the
Dirichlet-to-Neumann (DtN) coefficients are re-
placed by Robin-to-Robin (RtR) ones, and with
respect to the non-absorbing csase, a condition
has to be added to characterize the propagation
operator.
Keywords: quasiperiodicity, waveguides

1 Problem setting

We are interested in the Helmholtz equation with
frequency ω ∈ R:

−
(
µθ u

′)′ − ρθ ω2 u = f in R, (1)

where f ∈ L2(R) has a compact support (−a, a),
a > 0, and where µθ and ρθ are quasiperiodic,
that is, there exists θ ∈ (0, π/2) and 1–periodic
functions µp, ρp ∈ C 0(R2) such that

µθ(x) = µp(x~eθ) and ρθ(x) = ρp(x~eθ). (2)

The well-posedness of (1) is unclear. One ex-
pects that the physical solution u, if it exists,
may not belong to H1(R) due to a lack of decay
at infinity. In this case, one needs a so-called
radiation condition that imposes the behaviour
at infinity. Such a condition can be obtained in
practice using the limiting absorption principle,
which consists in (i) adding some absorption to
the problem, and (ii) studying the limit of the
solution u as Imω2 → 0.

2 Mathematical issues

Understanding the limit process described above
is closely related to the spectral analysis of the
self-adjoint differential operator in L2(R; ρθ dx):
∣∣∣∣∣∣
Hθu = − 1

ρθ

(
µθ u

′)′,

D(Hθ) =
{
u ∈ H1(R), (µθ u

′)′ ∈ L2(R)
}
.

When µθ and ρθ are periodic ie. when tan θ ∈ Q,
Floquet theory shows that the spectrum σ(Hθ)
is purely continuous with a band structure.

When tan θ is irrationnal, σ(Hθ) has an ab-
solutely continuous part as in the periodic case,
but may also have a point part, and a even a sin-
gular continuous part that may contain a Can-
tor set (that is, a closed set with no isolated
points and whose complement is dense, see [2]
for related results).

Indeed, there is no problem with the limiting
absorption principle when ω2 is not in σ(Hθ). Of
course, it cannot hold when ω2 is an eigenvalue
de Hθ (we exclude this case in the following). In
all the other cases, the question is still open.

3 A solution approach

We propose a numerical procedure assuming that
the limiting absorption principle holds. One
preliminary step is to notice that if Imω2 > 0,
then u can be computed by solving problems of
the generic form: Find uθ ∈ H1(R+) such that
∣∣∣∣∣
−
(
µθ u

′
θ

)′ − ρθ ω2 uθ = 0, in R∗+,

uθ(0) = 1.
(3)

Since µθ, ρθ are traces of periodic functions along
~eθ R, the idea is to interpret uθ as the trace along
the same line of Uθ, the solution of a 2D pe-
riodic problem in (0, 1) × R+ with a Dirichlet
condition on (0, 1)×{0}. The periodicity of the
half-guide problem allows us to compute Uθ by
solving Dirichlet local cell problems and by
computing the propagation operator P which
is the unique solution of a stationary Riccati
equation with a spectral radius ρ(P) < 1 (more
details can be found in Part 1).

The next step then consists in passing to the
limit Imω2 → 0 in the method presented above.
Doing so however raises several difficulties. First
of all, for Imω2 = 0, considering the Dirich-
let half-line problem (3) may introduce artifi-
cial edge resonances. More importantly, we have
shown that the Dirichlet local cell problems
are ill-posed for most frequencies (i.e. out-
side an interval). These lead us to introduce the
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Figure 1: µp(y1, y2) = 1.5 + cos(2πy1) cos(2πy2) (left), its quasiperiodic trace along ~eθ, θ = π/3 (right)
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Figure 2: Solution of (1) depending on whether ω2 belongs or not to σess(Hθ)

Robin half-line problem instead of (3):
∣∣∣∣∣
−
(
µθ ũ

′
θ

)′ − ρθ ω2 ũθ = 0, in R∗+,[
µθ ũ

′
θ

]
(0) + iω z ũθ(0) = 1,

(4)

with Re z > 0, so that the associated operator
has no discrete spectrum. We look for solutions
ũθ as ũθ(x) = Ũθ(x~eθ), where Ũθ satisfies for
(y1, y2) ∈ Ω := (0, 1)× R∗+ the problem
∣∣∣∣∣∣∣∣

−Dθ

(
µpDθŨθ

)
− ρp ω2 Ũθ = 0 (Ω),

sin θ µpDθŨθ + iω z Ũθ = ϕ, (y2 = 0),

Ũθ is periodic wrt. y1

(5)

with ϕ ∈ C 0(R), an arbitrary 1–periodic func-
tion that must satisfy ϕ(0) = 1 for the sake of
consistency with the condition satisfied by ũθ.

(1) If ω2 is not in σess(Hθ), the essential spec-
trum of Hθ, then (5) is well-posed in H1

θ (Ω) :=
{U, DθU ∈ L2(Ω)}, and the procedure is similar
to the absorbing case. More precisely,

Ũθ(ϕ)(y1, y2 + `) = Ũθ(P̃`ϕ)(y1, y2) (6)

where the propagation operator P̃ is defined by

P̃ϕ =
[

sin θ µpDθŨθ(ϕ) + iωz Ũθ(ϕ)
]
|y2=1.

In this case, Ũθ can be computed cell by cell
in terms of the solutions E0, E1 of Robin lo-
cal cell problems, i.e. the PDE in (5) com-
pleted with periodic conditions in the y1 direc-
tion and Robin conditions (cf Figure 3). For
any ω2 ∈ R, these local cell problems are well-
posed, contrary to the Dirichlet ones. One can
show that P̃ is the unique solution of a Riccati
system with a spectral radius ρ(P̃) < 1.

(2) If ω2 ∈ σess(Hθ), then (5) is no longer
well-posed in H1

θ (Ω). In other terms, the outgo-
ing solution can oscillate without vanishing until

E0(ϕ)

sin θµpDθẼ
0 + iωzẼ0 = ϕ

sin θµpDθẼ
0 − iωzẼ0 = 0

per per E1(ϕ)

sin θµpDθẼ
1 + iωzẼ1 = 0

sin θµpDθẼ
1 − iωzẼ1 = ϕ

per per

phantom

Figure 3: Local cell problems

infinity. In order to construct the outgoing so-
lution, we use the same procedure as in the pre-
vious case by computing Ẽ0, Ẽ1, and by solving
the Riccati system. To allow oscillations at in-
finity for the outgoing solution, one has to look
for a solution of the Riccati system of spectral
radius equal to 1 (see (6)). However, the Riccati
system may admit an infinity of such solutions.
To recover uniqueness and characterize the out-
going propagation operator, we adapt the spec-
tral condition proposed in [1]. This condition,
obtained by limiting absorption for the classical
Helmholtz equation, is linked to the energy flux
of the outgoing solution.

Once P̃ is obtained, using the solutions of the
local cell problems, one can deduce Ũθ cell by
cell and then, provided that ω2 is not in the
discrete spectrum of Hθ, compute coefficients
λ±θ ∈ C so that

±(µθu
′)(±a) + λ±θ u(±a) = 0

are transparent conditions for (1).
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