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Abstract

We aim at describing the statistics of the acous-
tic wavefield backscattered by a randomly het-
erogeneous penetrable medium in the homog-
enization regime.
Keywords: stochastic homogenization, wave equa-
tion

1 Introduction

In biological ultrasound imaging, the mea-
sured quantity is the backscattered wave gen-
erated by a large number of unresolved sub-
wavelength scatterers. These scatterers can be
modeled as inhomogeneities in density and com-
pressibility. In the Born approximation, the back-
scattered field is well understood, but the as-
sumption does not hold when the number of
scatterers becomes very large, which is the case
in many situations. Stochastic homogenization
techniques do not rely on single diffusion ap-
proximation and can be an accurate model to
describe the backscattered field.

2 Framework

Here d denotes the dimension, d = 1, 2 or 3.
Let (Ω,F , P) be the probability space and let
M ⊂ Rd be the medium in which lie small ran-
domly placed inhomogeneities of size ϵ > 0.
We denote by aϵ ∈ C∞(Rd, Rd × Rd) the den-
sity and nϵ ∈ C∞(Rd) the compressibility. We
suppose that the outer medium Rd \M is ho-
mogeneous of parameters (I, 1). The inhomo-
geneities (ϵSω

i )i∈N∗ have constant parameters
denoted by (aω

Si
)i∈N∗ and (nω

Si
)i∈N∗ and lie in a

homogeneous background with properties (am, nm).
For all x ∈ Rd and a.e. ω ∈ Ω, the density

and compressibility are therefore modeled by:
{

aϵ(x) := am(I + ηa(x/ϵ, ω))χM(x) + (1 − χM(x))I

nϵ(x) := nm(1 + ηn(x/ϵ, ω))χM(x) + (1 − χM(x))1

with

ηa(x, ω) = ∑
i∈N∗

(
a−1

m aω
Si
− I
)

χSω
i
(x)

ηn(x, ω) = ∑
i∈N∗

(
nω

Si

nm
− 1

)
χSω

i
(x)

The medium contains around ϵ−d particles,
spaced from each other by a distance of order ϵ,
so that we are in the homogenization regime.
Furthermore we assume that the distribution
of the center of the particules (Sω

i )i∈N∗ of size
1, is a stationary and ergodic process. There-
fore ηa and ηn are stationary and ergodic pro-
cesses. Moreover, aϵ and nϵ are supposed to
be bounded both below and above, by respec-
tively strictly positive matrices or constants in-
dependent of the randomness.

We excite the medium by a time-harmonic
plane wave ui. An example is shown on fig-
ure 1.
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Figure 1: Setup of the scattering problem

The total field uϵ = ui + us
ϵ is the solution

of :





∆us
ϵ + k2us

ϵ = 0 in Rd \M
∇ · (aϵ∇uϵ) + k2nϵuϵ = 0 inM
(us

ϵ + ui) = uϵ on ∂M
∇(us

ϵ + ui) · ν = aϵ∇uϵ · ν on ∂M

(1)
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along with the Sommerfeld radiation con-
dition on the scattered wave field us

ϵ.
This problem has already been treated in [3] in
the periodic case.

Under the stationary and ergodic assump-
tion, it can be shown [1] that the solution uϵ

converges in almost surely weakly in H1
loc(R

d)
towards a homogenized field u0 = ui + us

0 so-
lution of :





∆us
0 + k2us

0 = 0 in Rd \M
∇ · (a⋆∇u0) + k2n⋆u0 = 0 inM
(us

0 + ui) = u0 on ∂M
∇(us

0 + ui) · ν = a⋆∇u0 · ν on ∂M

(2)

complemented with the radiation condition
on us

0, for some positive definite and constant
tensor a⋆ and positive constant n⋆.

We will present our estimates of the error in
the Hilbert space L := L2(Ω, L2

loc(R
d \M)) in

several situations.
Though, in order to get quantitative results, we
need to strengthen our hypotheses and assume
a quantitative mixing condition [2] such as a
Log Sobolev Inequality. Numerous processes
satisfy all these conditions such as the type-2
Matérn process which match our model and
satisfy a weighted Log-Sobolev Inequality.

3 Case aϵ constant

We will first present the case where aϵ is
constant. Indeed, in this case the equation is
simpler and we can find a far field expansion,
involving the homogenized Green function G0,
solution for y ∈ Rd of:
{

∆G0(·, y) + k2G0(·, y) = −δy in Rd \M
∇ · (a⋆∇G0(·, y)) + k2n⋆G0(·, y) = −δy inM

(3)
along with the usual transmission conditions

and the Sommerfeld radiation condition.

Theorem 1. For x ∈ Rd \M:

uϵ(x) = u0(x) + k2
ˆ

M
((nϵ(y)− n⋆)u0(y)×

G0(y, x)) dy + OL(ϵd)

(4)

This result is a generalization of the Born
expansion with the homogenized solution in-
stead of the incident wave field. A corollary of

Theorem 1 describes the statistics of the wave
field ϵ−d/2uϵ as a zero-mean Gaussian process
with a covariance function that depends on the
two-point statistics of the random process nϵ.

4 1D case

When d = 1, explicit formulae can be found
and therefore, it is possible to find an asymp-
totic model in the general case and control all
of the error terms.

Theorem 2. For x ∈ R \M:

uϵ(x) = u0(x) +
ˆ

M
(

a⋆

aϵ(y)
− 1)a⋆u′

0(y)∂xG0(x, y)dy

+ k2
ˆ

M
(nϵ(y)− n⋆)u0(y)G0(x, y)dy + OL(ϵ)

(5)

In dimension 1, we have explicit formulae
for a⋆ and n⋆, that is:

a⋆ = E(
1
aϵ
)−1 (6)

n⋆ = E(nϵ) (7)

Using these formulae, we can also evaluate the
two main terms in (5) which are both of mean
zero and of size ϵ

1
2 as expected.

5 Conclusion

We have described the behavior of the speckle
field generated by a large number of compress-
ibility inhomogeneties which results in an ana-
logue to the Born approximation. The case when
the inhomogeneities also present a density con-
trast shall be treated in forthcoming work.
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