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Abstract

In this talk, we discuss the construction and
analysis of higher-order time integration schemes
for the full discretization of linear Maxwell equa-
tions on locally refined spatial grids. The schemes
are based on a higher-order implicit method,
e.g., an algebraically stable Runge–Kutta method.
Our main contribution is to propose a precondi-
tioned Krylov subspace method for solving the
linear systems arising in each time step, which is
designed in such a way that its convergence only
depends on the coarse mesh but not on the fine
mesh. This is shown by approximation theory
in the complex plane.

The advantage of this approach is that it is
applicable to any implicit scheme and also works
for exponential integrators. It is even applica-
ble to nonlinear problems, where such linear sys-
tems arise within the Newton iterations.
Keywords: locally refined spatial grid, Maxwell
equations, higher-order time integration, Krylov
subspace methods, preconditioning.

1 Introduction

Let Ω ⊂ Rd, d = 1, 2, 3, be an open, bounded
Lipschitz domain and T > 0 be the simula-
tion time. The linear Maxwell equations in a
medium with permeability µ : Ω → R, per-
mittivity ε : Ω → R, and a perfect conducting
boundary are given by

µ∂tH = −curlE, (0, T )× Ω,

ε∂tE = curlH− J, (0, T )× Ω,

H(0) = H0, E(0) = E0, Ω,

n×E = 0, (0, T )× ∂Ω.

(1)

Here, H,E,J : (0, T )× Ω → Rd denote the un-
known magnetic and electric field, and the given
current density, respectively. The vector n de-
notes the unit outward normal vector of the do-
main Ω. Discretization of (1) in space using a
dG method with central flux [5, Section 2] leads
to

∂tuh(t) = Cuh(t) + jh(t), u0
h = uh(0), (2)

where

uh =

[
Hh

Eh

]
, C =

(
0 −CE
CH 0

)
, jh =

[
0
−Jh

]
.

Here, CH and CE are spatially discretized curl-
operators. The boundary condition for the elec-
tric field is weakly enforced in the definition of
CE .

We split the locally refined mesh Th into
a coarse mesh Th,c and a fine mesh Th,f with
minimum mesh sizes hc and hf , respectively.
The methods are attractive if hf � hc and
card (Th,f )� card (Th,c). Based on this decom-
position of the mesh, the split discrete curl op-
erators CeH , CiH , CeE , CiE defined in [5, Definition
2.7] satisfy

CH = CiH + CeH , CE = CiE + CeE (3)

and

CeHCeE = CeHCE , CiHCiE = CiHCE . (4)

In fact, it was shown in [5], that not only the fine
elements have to be treated implicitly but also
their coarse neighbors. Then, the split operators
CeH and CeE can be bounded independently of fine
mesh sizes hf , i.e.,

‖CeE‖ ≤ ch−1c , and ‖CeH‖ ≤ ch−1c , (5)

with a constant c that is independent of hf and
hc.

2 Higher-order time integration

The efficient implementation of an s-stage Gauss
Runge-Kutta method [3, Section II.1] for the
time integration of (2) with step size τ > 0 re-
quires solving linear systems of equations of the
form

Ax = b, where A := I + τ2αCHCE (6)

in each time step. The real or complex param-
eter α := αR + iαI only depends on the coeffi-
cients of the Runge-Kutta method but neither
on the problem nor on the mesh. Since CHCE is
real and symmetric, A is complex symmetric.
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3 Krylov subspace methods

To exploit the structure of A, we suggest to use
the quasi-minimal residual (QMR) algorithm for
complex symmetric matrices [2, Section 3], which
is based on the complex symmetric Lanczos pro-
cess. For an initial guess x0 and an initial residue
r0, QMR yields an approximation xm ∈ x0 +
Km(A, r0), where Km(A, r0) is Krylov subspace
generated by A and r0.

Analogously to [4, Theorem 2], one can prove
that the error of the QMR iterates satisfies
∥∥A−1b− xm

∥∥ ≤ C min
pm∈Pm

pm(0)=1

‖pm(A)‖ ‖r0‖ , (7)

with a constant C independent of ‖A‖. Here,
Pm denotes the set of all polynomials of degree
at most m. If the field of values F(A) is con-
tained in a convex, bounded set S, then, using
Faber polynomials and complex approximation
theory, cf. [1], we have

‖pm(A)‖ ≤ (1 +
√

2) max
z∈S
|pm(z)| . (8)

Note that the largest elements in F(A) are of
the order h−1f .

4 Preconditioning

Obviously, a smaller set S in (8) leads to faster
convergence. To speed up the convergence, we
aim to construct a preconditioner such that the
field of values of the preconditioned matrix can
be bounded independently of hf . Motivated by
locally implicit methods for Maxwell equations
in [5], we suggest to approximate A by its dom-
inant part,

A ≈ B := I + τ2ρ CiHCiE , ρ > 0, (9)

i.e., we replace the discrete curl operators CH , CE
in (6) defined on the full mesh by the split op-
erators acting on the implicitly treated mesh el-
ements and α by a real parameter ρ > 0. Hence
B is a symmetric, positive definite matrix, which
allows us to define the equivalent preconditioned
linear system by

Ãx̃ = b̃, Ã := B−1/2AB−1/2, (10)

where x̃ := B1/2x and b̃ := B−1/2b. Since A is
complex symmetric and B is real symmetric, the
preconditioned matrix Ã is again complex sym-
metric. We now apply the complex symmetric

QMR method to the preconditioned linear sys-
tem (10) and refer to this method as precon-
ditioned QMR method (pQMR). For F(Ã) we
have proven the following theorem.

Theorem 1 The field of values of Ã defined in
(10) satisfies F(Ã) ⊂ S̃, where S̃ is bounded
independently of the fine mesh.

By (7) and (8), this theorem shows that the
convergence of the preconditioned QMRmethod
is indeed independent of the fine mesh.

5 Acknowledgement

Funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – Project-
ID 258734477 – SFB 1173.

References

[1] M. Eiermann, On semi-iterative methods
generated by Faber polynomials, Numer.
Math., 56 (1989), pp. 139-156.

[2] R. Freund, Conjugate gradient-type meth-
ods for linear systems with complex sym-
metric coefficient matrices, SIAM J. Sci.
Stat. Comp., 13 (1992), pp. 425-448.

[3] E. Hairer, C. Lubich, and G. Wanner, Geo-
metric Numerical Integration, 2nd edition,
Springer-Verlag Verlag Heidelberg, 2006.

[4] M. Hochbruck and C. Lubich, Error analy-
sis of Krylov methods in a nutshell, SIAM
J. Sci. Com., 19 (1998), pp. 695-701.

[5] M. Hochbruck, and A. Sturm, Error
analysis of a second-order Locally im-
plicit method for linear Maxwell’s equa-
tions, SIAM J. Numer. Anal., 54 (2016),
pp. 3167-3191.

Suggested members of the Scientific Committee:
Martin Gander, Sébastien Impériale


