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Abstract
We study a spectral problem defined by an un-
forced Helmholtz equation when using the per-
mittivity as the eigenvalue. The eigensolutions
of such problems, so-called generalised normal
modes (GNM), have been recently applied by
different authors for modal expanding electro-
magnetic scattering fields by resonant nanocav-
ities in nanophotonic systems. In this work
we make progress in the theoretical underpin-
nings of GNM by proving their completeness in
a pertinent energy functional space. We further
prove that they form a Riesz basis in some par-
ticular configurations.
Keywords: Electromagnetic resonances, modal
expansion, spectral theory, non-selfadjoint op-
erators.

1 Introduction
An efficient approach to the analysis of the elec-
tromagnetic field scattered by a nanoresonator
subject to radiation losses (i.e. in an open sys-
tem), is to proceed by a modal expansion ap-
proach wherein the resonant response can be
described as an infinite sum using as basis func-
tions the eigenfunctions of a spectral problem
defined by the unforced Maxwell’s equations.
One of these spectral problems stems from con-
sidering the permittivity as the eigenvalue, yield-
ing the so-called generalized normal modes (GNM)
[1, 2]. This approach entails several advantages
over the alternative quasi-normal modes where
the frequency is considered as the eigenvalue:
GNM correspond to real stationary states (for
a given real frequency), they don’t suffer from
an exponential growth at infinity, and are un-
derpinned by a linear eigenvalue problem. How-
ever, to date, this approach is restricted to nu-
merical experimentation only and lacks theoret-
ical grounds. For instance, an important open
question is whether the (generalized) eigenfunc-
tions define a Riesz basis and therefore one can
rigorously justify the modal expansion.

Owing to radiation conditions, the linear spec-

tral problem underpinning GNM is non-self-adjoint,
which is at the source of numerical and theo-
retical difficulties. Furthermore, the problem
is non-standard in that its eigenvalues both di-
verge and accumulate at finite points. We are
accordingly motivated to study the spectral prop-
erties of the GNM spectral problem. We focus,
in particular, in GNM modes in 2D which are
governed by the Helmholtz equation. We con-
sider different scenarios, which are detailed in
section 2. Our main results are the proof of the
completeness of these modes in H1(D), where
D is the domain occupied by the resonant cav-
ity. We also show that they define a Riesz basis
in the particular cases of the domains depicted
in Fig. 1.

2 Problem formulation
Consider a domain Ω ⊂ R2, which extends (at
least in one coordinate) to infinity. In particular
we consider Ω to be a 2D waveguide or Ω = R2.
Consider also a compact and simply-connected
domain D ⊂ Ω which we assume to be smooth
over the transmission boundary with Ω. Fig. 1
shows two examples. We are interested in the
following PDE spectral problem defined in Ω:

Find E ∈ C and u ∈ H1
loc (Ω)

such that, for ε = χ(D) E + χ(Ω\D),
∇

(
1
ε ∇u

)
+ ω2u = 0,

limx→∞ |x|
(

∂
∂x − iω

)
u(x) = 0

(1)

Here χ(·) denotes the indicator function. If Ω
is a waveguide, we further consider Neumann
boundary conditions on the waveguide bound-
ary.

3 Spectral analysis
We proceed by a variational approach and use a
Dirichlet-to-Neumann mapping (which accounts
for the radiation conditions) to reduce prob-
lem (1) to the study of a linear operator Aω :
H1(D) → H1(D) with eigenvalues 1/E . The
spectral properties of A0 are well understood
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(a) D = {(x, y); x2 + y2 < R}; Ω = R2.

D Ω

(b) D = {(x, y); −a < x < 0, 0 < y < 1};
Ω = {(x, y); −a < x, 0 < y < 1}. In this case,
we also consider Neumann boundary conditions on
the upper walls and a Dirichlet boundary condition
at x = −a.

Figure 1: Examples of domains D and Ω.

[3]. Furthermore, it can be shown that Aω − A0
is compact. This yields the following result.

Lemma 1 The spectrum of A(ω) is discrete with
two accumulation points at E = ∞ and E = −1.
Plus, all eigenvalues have a non-negative imag-
inary part.

Each of this accumulation points is associated
with a different family of modes. E = ∞ is asso-
ciated with bulk modes which can be used to de-
scribe resonances in high-index cavities; E = −1
is associated with boundary modes which can
be used to describe resonances in plasmonic res-
onators. This is illustrated in Fig. 2 and Fig. 3,
which show some of the eigenfunctions for D of
Fig. 1.(b). The numerical computation of these
modes was carried out using the finite element
software XLiFE++.

Using the above lemma along with the Riesz
decomposition (or splitting) theorem we can show
the existence of two subspaces H∞ and H−1
such that H1(D) = H∞ ⊕ H−1, where Aω re-
stricted to Hi is invariant, with only one ac-
cumulation point (E = ∞ or E = −1), and of
type Hilbert-Schmidt. Thus, using the theory
of Hilbert-Schmidt operators yields the follow-
ing result.

Theorem 2 The generalized eigenfunctions of
Aω are complete in H1(D).

To further show that the generalized eigenfunc-
tions of Aω form a Riesz basis of H1(D) it is

sufficient to show that the application T (α) :=∑
k αkuk, where {uk} is the sequence of gener-

alized eigenfunctions of Aω, defines an isomor-
phism of l2 into H1(D). One can show that
this property is directly linked to the asymp-
totic behaviour of the eigenvalues of Aω. In the
particular case of the configurations depicted in
Fig. 1 such asymptotic behaviour can be esti-
mated using separation of variables techniques,
which yields the following result
Theorem 3 The eigenvalues of the operator Aω

stemming from the domains depicted in Fig. 1
are not defective. Moreover, their eigenfunc-
tions form a Riesz basis of H1(D).

Figure 2: First four "bulk" eigenfunctions for D
of Fig. 1.(b).

Figure 3: First four "plasmonic" eigenfunctions
for D of Fig. 1.(b).
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