An iterative hybrid numerical-asymptotic boundary element method for high-frequency scattering by multiple screens

Oliver Phillips^{1,*}, Stephen Langdon², Simon Chandler-Wilde¹

¹Department of Mathematics and Statistics, University of Reading, Reading, UK ²Department of Mathematics, Brunel University London, London, UK *Email: o.j.phillips@pgr.reading.ac.uk

Abstract

Standard Boundary Element Methods (BEM) for scattering problems, with piecewise polynomial approximation spaces, have a computational cost that grows with frequency. Recent Hybrid Numerical-Asymptotic (HNA) BEMs, with enriched approximation spaces consisting of the products of piecewise polynomials with carefully chosen oscillatory functions, have been shown to be effective in overcoming this limitation for a range of problems, focused on single convex scatterers or very specific non-convex or multiple scattering configurations. Here we present a novel HNA BEM approach to the problem of 2D scattering by a pair of screens in an arbitrary configuration, which we anticipate may serve as a building block towards algorithms for general multiple scattering problems with computational cost independent of frequency.

Keywords: High-frequency scattering, multiple scattering, BEM, hybrid numerical-asymptotic

1 Problem Statement

We consider the scattering of a plane wave $u^i(\mathbf{x}) := e^{ik\mathbf{x}\cdot\mathbf{d}}$, where **d** is a unit vector in the direction of the plane wave and k > 0 is the wavenumber, by the union of two disjoint 1D screens, $\Gamma = \Gamma_1 \cup \Gamma_2$, in $D := \mathbb{R}^2 \setminus \overline{\Gamma}$, where $\overline{\Gamma}$ denotes the closure of Γ . The two screens can be in any orientation as long as they are not touching (e.g., Figure 1). The scattering problem we are looking to solve is to find $u \in C^2(D) \cap W^1_{\text{loc}}(D)$ such that

$$\Delta u + k^2 u = 0 \text{ in } D, \qquad (1)$$

$$u = 0 \text{ on } \Gamma, \qquad (2)$$

and the scattered field $u^s = u - u^i$ satisfies the Sommerfeld radiation condition. By Green's 2nd identity (see, e.g., [2])

$$u(\mathbf{x}) = u^{i}(\mathbf{x}) \qquad (3)$$
$$-\frac{\mathrm{i}}{4} \int_{\Gamma} H_{0}^{(1)}(k|\mathbf{x} - \mathbf{y}|)\phi(\mathbf{y}) \,\mathrm{d}s(\mathbf{y}), \quad \mathbf{x} \in D,$$

Figure 1: $\operatorname{Re}(u)$ in D, with Γ_1 on the left and Γ_2 on the right. The incident wave direction **d** is indicated by the arrow.

where $\phi \in \widetilde{H}^{-1/2}(\Gamma)$ is the jump in the normal derivative of u across Γ , and $H_0^{(1)}$ is the Hankel function of the first kind of order zero. Further, ϕ satisfies the boundary integral equation

$$\frac{\mathrm{i}}{4} \int_{\Gamma} H_0^{(1)}(k|\mathbf{x} - \mathbf{y}|)\phi(\mathbf{y}) \,\mathrm{d}s(\mathbf{y}) = u^i(\mathbf{x}), \quad \mathbf{x} \in \Gamma.$$
(4)

2 Multiple scattering iterative method

For ease of notation, define $\phi_j := \phi|_{\Gamma_j} \in \widetilde{H}^{-1/2}(\Gamma_j)$, and let $S_{\ell j} : \widetilde{H}^{-1/2}(\Gamma_j) \to H^{1/2}(\Gamma_\ell)$ be defined by

$$S_{\ell j}\psi(\mathbf{x}) := \frac{\mathrm{i}}{4} \int_{\Gamma_j} H_0^{(1)}(k|\mathbf{x} - \mathbf{y}|)\psi(\mathbf{y}) \,\mathrm{d}s(\mathbf{y}), \quad (5)$$

for $\mathbf{x} \in \Gamma_{\ell}$, $\ell, j \in \{1, 2\}$, and $\psi \in \widetilde{H}^{-1/2}(\Gamma_j)$. Equation (4) can then be written as

$$S_{11}\phi_1 + S_{12}\phi_2 = u^i|_{\Gamma_1}, \tag{6}$$

$$S_{21}\phi_1 + S_{22}\phi_2 = u^i|_{\Gamma_2}.$$
 (7)

The first step in our iterative method is to ignore the effect of Γ_2 so (6) becomes

$$S_{11}\phi_1^{(0)} = u^i|_{\Gamma_1},\tag{8}$$

where the 0 in the superscript refers to the number of the iteration considered. We next solve (7) for $\phi_2^{(1)}$, replacing ϕ_1 by $\phi_1^{(0)}$, thereby considering the first reflection from Γ_1 on Γ_2 , solving

$$S_{22}\phi_2^{(1)} = u^i|_{\Gamma_2} - S_{21}\phi_1^{(0)}.$$
 (9)

We then solve (6) with ϕ_2 replaced by $\phi_2^{(1)}$; in order to find the $2r^{th}$ order reflection on Γ_1 and $(2r+1)^{th}$ order reflection on Γ_2 we solve, for $r = 0, 1, 2, \ldots$, with $\phi_2^{(-1)} := 0$,

$$S_{11}\phi_1^{(2r)} = u^i|_{\Gamma_1} - S_{12}\phi_2^{(2r-1)}, \quad (10)$$

$$S_{22}\phi_2^{(2r+1)} = u^i|_{\Gamma_2} - S_{21}\phi_1^{(2r)}.$$
 (11)

3 High frequency approximation space

To solve (10) and (11) for a given r we propose to use an HNA BEM approximation space adapting that in [2]. The solution $\phi_1^{(2r)}$ to (10) can be decomposed as

$$\phi_1^{(2r)}(s) = \Psi_1^{(2r)}(s) + v_1^{+,2r}(s)\mathrm{e}^{\mathrm{i}ks} + v_1^{-,2r}(s)\mathrm{e}^{-\mathrm{i}ks}, (12)$$

for $s \in [0, L_1]$, where L_1 is the length of Γ_1 , and s denotes the distance from one of the end points. $\Psi_1^{(2r)}$ is the leading order physical optics high-frequency approximation, defined as twice the normal derivative of the field incident on Γ_1 . Precisely, at this iteration,

$$\Psi_1^{(2r)} = 2\frac{\partial}{\partial n} \left(u^i - \mathcal{S}_2 \widehat{\phi_2^{(2r-1)}} \right) \Big|_{\Gamma_1}$$

where, for $\psi \in \widetilde{H}^{-1/2}(\Gamma_j)$, $\mathcal{S}_j \psi \in C^2(D) \cap W^1_{\text{loc}}(D)$ is given, for j = 1, 2, by

$$\mathcal{S}_{j}\psi(\mathbf{x}) := \frac{\mathrm{i}}{4} \int_{\Gamma_{j}} H_{0}^{(1)}(k|\mathbf{x}-\mathbf{y}|)\psi(\mathbf{y})ds(\mathbf{y}), \ \mathbf{x} \in D,$$

and $\widehat{\psi}(\mathbf{x}) := \psi(\mathbf{x})$ if a point source at \mathbf{x} is incident on the same side of Γ_1 as u^i , otherwise $\widehat{\psi}(\mathbf{x}) := -\psi(\mathbf{x})$.

The term $\varphi_1^{(2r)}(s) := v_1^{+,2r}(s)e^{iks} + v_1^{-,2r}(s)e^{-iks}$ captures the diffraction from the corners. As in [2], it can be shown that the functions $v_1^{\pm,2r}$ in (12) are not oscillatory and hence can be approximated using standard piecewise polynomials with a number of degrees of freedom essentially independent of the wavenumber k. Therefore we can approximate $\varphi_1^{(2r)}$ by a sum of products of piecewise polynomials and $e^{\pm iks}$ (our HNA

Figure 2: The iterates on Γ_1 (top) and Γ_2 (bottom) for the configuration of Figure 1, with k = 5.

BEM approximation space). Substituting (12) into (10) means we are solving, for r = 0, 1, 2, ...,

$$S_{11}\varphi_1^{(2r)} = u^i|_{\Gamma_1} - S_{12}\phi_2^{(2r-1)} - S_{11}\Psi_1^{(2r)}.$$
 (13)

These equations can each be solved by either the Galerkin method, as in [2], or the least squares collocation method of [1], using the above HNA BEM approximation space, whichever method we choose.

4 Results

In this section we test the iterative component of the algorithm for the geometry in Figure 1. Solutions for various r can be seen in Figure 2, solving (10) and (11) by a conventional BEM. For this configuration we see convergence in very few iterations.

References

- A. Gibbs, D. P. Hewett, D. Huybrechs and E. Parolin, Fast hybrid numericalasymptotic boundary element methods for high frequency screen and aperture problems based on least-squares collocation, SN Partial Differential Equations and Applications, 1 (2020) p.21.
- [2] D. P. Hewett, S. Langdon and S. N. Chandler-Wilde, A frequency-independent boundary element method for scattering by two-dimensional screens and apertures, *IMA J. Numer. Anal.* **35** (2015) 1698-1728.