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A Hausdor�-measure boundary element method for scattering by fractal screens
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Abstract

Sound-soft fractal screens can scatter acoustic
waves even when they have zero surface mea-
sure. To solve such problems we make what ap-
pears to be the �rst application of the boundary
element method (BEM) where each BEM basis
function is supported in a fractal set, and the in-
tegration is with respect to a Hausdor� measure
rather than (Lebesgue) surface measure. We
prove convergence rates for the Galerkin ver-
sion of this �Hausdor� BEM� when the scat-
terer is a �at screen that is the attractor of an
iterated function system. 2D numerical experi-
ments con�rm the sharpness of our theory.
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1 Introduction

Scattering in Rn+1 (n = 1 or 2) by an in�nites-
imally thin �at screen Γ that is a bounded sub-
set of Rn × {0} is a classical wave scattering
problem, but usually Γ is assumed to be a rel-
atively open subset of the hyperplane Γ∞ :=
Rn × {0} that is Lipschitz or smoother. The
study of screens that have a fractal structure is
relevant in both naturally-occurring and engi-
neered contexts. Recently it has been shown [1],
for the time harmonic acoustic case, that well-
posed boundary value problems (BVPs) and as-
sociated boundary integral equations (BIEs) can
be formulated without any constraint on the ge-
ometry of Γ, in particular when Γ is fractal with
fractal dimension d < n and so has zero sur-
face measure. In the case of sound-soft bound-
ary conditions such screens are still visible to
(i.e. scatter) acoustic waves if they have Haus-
dor� dimension d > n− 1 [1].

A natural methodology for numerical com-
putation of scattering by a fractal screen Γ is
to approximate Γ by a sequence of prefractal
screens Γ` which converge to Γ and which each

have positive surface measure so that standard
BEM can be applied. Conditions on the se-
quence Γ` and on the BEM meshsize h` on Γ`
that ensure convergence have recently been es-
tablished in [2]. However, the Mosco conver-
gence arguments in [2] do not lead to conver-
gence rates.

In this talk we take a di�erent approach which
applies in the special case that Γ is a d-set for
some d ∈ (n − 1, n). (For the de�nition see,
e.g., [2], but roughly speaking this means that
every part of Γ has �nite positive d-Hausdor�
measure and Hausdor� dimension that is pre-
cisely d; if Γ is a Lipschitz domain it is a d-set
with d = n.) This approach is to use a Galerkin
BEM with an approximation space that con-
sists of piecewise constants restricted to �nite
elements of Γ.

2 The fractal geometry, scattering prob-

lem, and boundary integral equation

Identifying Γ∞ with Rn, consider the case when
Γ ⊂ Γ∞ ∼= Rn is the attractor of an iterated
function system (IFS) of contracting similarities
{s1, s2, . . . , sM}, for some M ≥ 2, that satis�es
the standard open set condition [3]. Then Γ is a
d-set, for some d ∈ (0, n]. We assume through-
out that d lies in the interesting range (n−1, n).

The sound-soft scattering problem we wish
to solve is: given an incident plane wave ui, �nd
u ∈ H̃1

loc(Rn+1 \ Γ) (the total �eld) such that

∆u+ k2u = 0 in Rn+1 \ Γ,

and us := u−ui (the scattered �eld) satis�es the
standard Sommerfeld radiation condition. By
standard arguments this problem is well-posed.
Moreover [1] u = −Sφ, where Sφ is a single-

layer potential with density φ ∈ H−1/2
Γ := {ψ ∈

H−1/2(Γ∞) : supp(ψ) ⊂ Γ} and φ satis�es the
boundary integral equation

Sφ = Pui|Γ∞ , (1)
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Figure 1: Error in Hausdor� BEM solution φ`
for scattering by Cantor set screen with various
α and ` = 0, 1, . . . , 11, with ` = 12 as reference
solution. Predicted convergence rate indicated
in top right; k = 3.

where S : H
−1/2
Γ → (H

−1/2
Γ )∗ is the single-layer

potential operator, (H
−1/2
Γ )∗ is a realisation of

the dual space of H
−1/2
Γ as a closed subspace of

H1/2(Γ∞), and P is orthogonal projection onto
that subspace.

Let L2(Γ) be the Hilbert space of functions
on Γ that are square-integrable with respect to
d-dimensional Hausdor� measure restricted to
Γ. A key result is that the trace operator trΓ :
C∞0 (Γ∞)→ C(Γ) extends to a continuous oper-
ator Hs(Γ∞)→ L2(Γ) for s > (n−d)/2 (in par-
ticular for s = 1/2) with adjoint tr∗Γ : L2(Γ) →
H−s(Γ∞) whose action is given, for ψ ∈ L2(Γ)
and φ ∈ Hs(Γ∞), explicitly by

〈tr∗Γψ, φ〉H−s(Γ∞)×Hs(Γ∞) =

∫

Γ
ψtrΓφ dHd,

as an integral with respect to d-dimensional Haus-
dor� measure.

3 The Hausdor� BEM

Let us assume now that each similarity sm has
the same contraction factor α ∈ (0, 1), in which
case d = log(1/M)/ log(α), and that Γ is dis-
joint, meaning that sm(Γ) ∩ sm′(Γ) = ∅, for
m 6= m′. Γ is the unique non-empty compact set
satisfying Γ = ∪Mm=1sm(Γ). Given ` ∈ N, divide

Γ up into M ` disjoint congruent components T ,
each given by T = sm1 ◦ sm2 ◦ · · · ◦ sm`

(Γ), for
some integer sequence (m1, . . . ,m`) ∈ {1, . . . ,M}`,
and let V` denote the subspace of L2(Γ) consist-
ing of those functions that are constant on each
T . Let V0 denote the subspace of L2(Γ) con-
sisting of functions constant on Γ. Thus, for
` ∈ N0 := N∪ {0}, V` is �nite-dimensional with
dimension N = M `. For ` ∈ N0, let V` :=

tr∗Γ(V`) ⊂ H
−1/2
Γ , and let φ` ∈ V` denote the

Galerkin solution of (1), given explicitly by φ` =
tr∗Γψ` where ψ` ∈ V` satis�es
∫

Γ

∫

Γ
Φ(x, y)ψ`(y)χ(x) dHd(x)Hd(y) =

∫

Γ
uiχdHd,

for all χ ∈ V`, where Φ(x, y), the kernel of S, is
the fundamental solution of the Helmholtz equa-
tion. We can show the following theorem:

Theorem 1 For each ` ∈ N0 the Galerkin so-

lution φ` ∈ V` is well-de�ned and satis�es, for

some constant c > 0 independent of ` and φ,
that

‖φ− φ`‖H−1/2
Γ

≤ cα`(s+1/2)‖φ‖Hs
Γ
,

if φ ∈ Hs
Γ for some −1/2 < s < −(n− d)/2.

If, as we conjecture, φ ∈ Hs
Γ for all s < −(n−

d)/2, then this estimate implies, in the 2D case
(n = 1) that, for every ε > 0, ‖φ − φ`‖H−1/2

Γ

=

O(M ε−`/2) = O(N ε/`−1/2) as `→∞. This con-
vergence rate (with ε = 0) is observed in Fig-
ure 1 in which n = 1, M = 2, s1(t) = αt,
s2(t) = 1 − α + αt, for t ∈ Γ∞ ∼= R, with
α ∈ (0, 1/2), so that Γ is a Cantor set.
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