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Abstract

We present two solvers for the Hierarchical
Poincaré-Steklov (HPS) discretization of 3D vari-
able coefficient Helmholtz problems. An itera-
tive approach uses a GMRES solver coupled with a
leaf-wise block-Jacobi preconditioner. The pre-
conditioner is built using two nested local solvers
accelerated by local homogenization. Both the
operator and preconditioner are implemented in
a matrix-free fashion and with distributed mem-
ory. The solver can tackle problems approxi-
mately 50 wavelengths in each direction requir-
ing more than a billion unknowns to get approx-
imately 7 digits of accuracy in less than an hour.

We compare with an extension to 3D of the
direct solver shown in [1,2]. Iterative local solvers,
matrix compression and a modified discretiza-
tion accelerate the solution and reduce memory
footprint. We test both approaches and their
performance with application examples.
Keywords: Helmholtz, Domain-Decomposition,
Poincaré-Steklov

1 Introduction

We consider the variable coefficient Helmholtz
problem with impedance boundary conditions
given below

−∆u(x)− κ2(1− b(x))u(x) =s(x), x ∈ Ω,

∂u

∂n
+ iηu(x) =t(x), x ∈ ∂Ω.

(1)

Ω = (0, 1)3, u(x) is the complex unknown so-
lution, κ ∈ R is the wave number, b(x) is a
given smooth scattering potential and n is the
outward normal unit vector to the boundary of
the domain. The functions s(x) and t(x) are
assumed to be smooth complex functions.

We discretize the geometry into a collection
of disjoint patches or leaves. Leaves are sized
so that a local boundary value problem can be
solved to high accuracy via a high degree Cheby-
shev spectral collocation method. Impedance-

Problem size in leaves 64× 64× 64

MPI distributed memory procs 4096
Degrees of Freedom 1027M

GMRES time (1114 iterations) 2206s
Table 1: Performance for 50 wavelengths across,
10−8 residual reduction, Chebyshev degree 16.

Figure 1: Merging subdomains in 3D

to-impedance (ItI) constraints are required be-
tween neighboring leaves. By using this opera-
tor for the coupling of elements, the HPS dis-
cretization is able to avoid artificial resonances
and does not appear to observe the so-called pol-
lution effect [1].

The iterative technique relies on the fact that
the matrix that results from HPS is block sparse,
where all non-zero blocks are also sparse and can
be applied matrix-free. To solve the linear sys-
tem we utilize a leaf-wise block-Jacobi precondi-
tioned GMRES solver. The proposed block-Jacobi
preconditioner and the system matrix are ap-
plied via matrix-free operations and exploit the
tensor product nature of the element wise dis-
cretization matrices. The local nature of the
blocks and the preconditioner make the solu-
tion technique naturally parallelizable in a dis-
tributed memory model. Numerical tests show
that the solution technique is efficient and capa-
ble of tackling problems with a billion degrees
of freedom (DoFs) in less than forty minutes in
parallel (see Table 1).

The direct technique is an extension of [1,2]
to 3D, it consists of two main steps after local
spectral discretization:

• Approximate boundary (Poincaré–Steklov)
and solution operators are constructed for
each patch, starting with the leaves.

• In a hierarchical fashion, using Schur com-
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plements obtain new patches by “glueing”
patches together two at a time by enforc-
ing ItI conditions via the Poincaré-Steklov
operators on the boundaries of each patch.
The procedure is illustrated in Figure 1.
For each merged patch, corresponding bound-
ary and solution operators are constructed.

2 Leaf discretization and solver

Let τ be a leaf, we seek to approximate the solu-
tion to (1) on Ωτ using classical spectral colloca-
tion. Discretizing this way we obtain the matrix
Aτ
c := −D2

x − D2
y − D2

z − Cτ . Cτ is a diag-
onal matrix with entries {κ2 (1 − b(xk))}nk=1,
D2
x, D

2
y and D2

z are Chebyshev differentiation
matrices with corner and edge interaction en-
tries removed.

The incoming and outgoing impedance op-
erators in eq. (1) are approximated using the
matrices F τ = N + iηI and Gτ = N − iηI.
I is the identity matrix and N approximates
the derivative at the boundary and is composed
of submatrices of Dx, Dy and Dz.

LetAτ :=

(
Aτ
c (Iτi , I

τ )
F τ

)
, where Iτi are the

interior node indices and Iτ are the indices for
all nodes. Reordering we obtain a leaf system of
the form

Aτ :=

(
Aτ
ii Aτ

ib

F τ
bi F τ

bb

)(
uτi
uτb

)
= RHSτ , (2)

where the subscript i stands for “interior” and
b for “boundary” nodes of the leaf. The matrix
Aτ
ii is sparse can be applied rapidly thanks to

its Kronecker product structure and Aτ
ib, F

τ
bi,

F τ
bb are also sparse.
When b(x) varies slowly, we solve this sys-

tem by using the 2 × 2 block-matrix inversion
formula. The formula needs the inverse of the
Schur complement Sτ and the inverse of Aτ

ii

which we apply iteratively using two nested GMRES
solvers preconditioned with the inverses of ho-
mogenized versions of Aτ

ii and Sτ . Given their
structure, such homogenized inverses are rela-
tively cheap to calculate.

3 Iterative method

The efficient leaf solver discussed in section 2
makes a leaf-wise block-Jacobi preconditioner a
natural choice for the GMRES global solver. Thus
we use a total of 3 nested GMRES solvers for leaves
and global systems. Further details are given

in [3] and some performance results are given in
Table 1.

The solver can efficiently tackle very big prob-
lems to obtain a single solution. Inverse prob-
lems involving solving for several body loads and
boundary conditions are better addressed with
a direct method as we explain hereafter.

4 Direct method

The direct technique used in [1,2] demonstrated
an excellent performance in 2D. We extend the
technique to 3D overcoming many dimensional-
ity challenges.

Increased dimensionality requires a large amount
of DoFs in each leaf. We accelerate inversion
using a modified spectral discretization. Leaf
matrices being sparse, we apply a local iterative
technique from section 3 when possible.

Operators for merging patches are signifi-
cantly larger in 3D. However, large patch oper-
ators are rank-deficient up to the desired accu-
racy, especially for high frequency. Interpolative
compression is used to reduce memory footprint.
Linear algebra is parallelized with distributed
memory akin to multifrontal solvers.

For inverse problems where the solution for
many body loads and boundary conditions is
needed, a direct technique outperforms an it-
erative solution. We study and compare both
techniques with application examples including
seismic inversion.
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