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Abstract
The Half-Space Matching (HSM) method has
been recently developed as a numerical method
for the solution of scattering problems with ani-
sotropic backgrounds. After a finite element
discretization, the HSM method couples a sparse
matrix, corresponding to the vicinity of the scat-
terer, with dense matrices resulting from half-
space representations of the solution. The com-
putation of these dense matrices requires the
evaluation of oscillating Fourier integral. We
show here that a fast an accurate evaluation
can be achieved by using far-field formulae and
deformations of integral contour in the complex
plane. Several validations are given in the 2D
acoustic isotropic and anisotropic case and in
the 3D case of an elastic isotropic plate.
Keywords: time-harmonic scattering, anisotropic
media, oscillating integrals

1 The issue of oscillating integrals in the
HSM method

Let us describe the method for the following 2D
time-harmonic scattering problem:

div(A∇u) + ω2u = f (R2) (1)

where A is a positive definite matrix caracteris-
ing the anisotropy of the propagation medium,
ω is the normalized pulsation, and f is a com-
pactly supported source term. In addition, we
look for the outgoing solution u, in the sense of
the limiting absorption principle. Let 0 < a <
b. The HSM formulation couples five unknowns
that are the restriction ub of u in a bounded do-
main (−b, b)2 (which contains the support of f)
and the traces φ1, φ2, φ3, φ4 of u on the four in-
finite straight lines x = ±a and y = ±a delimit-
ing four half planes. The derivation of the HSM
system of equations is based on the so-called
half-space representations. For instance, know-
ing φ1, one can recover u in the corresponding
half-space Ω1 = {(x, y);x > a} by the following

integral formula:

u(M) =
∫

∂Ω1
K(M,P )φ1(P )dγP (2)

where the kernel K(M,P ) is the normal deriva-
tive of the Dirichlet Green function in Ω1. Simi-
lar formulae hold for the three other half-spaces,
and the HSM equations ensure the compatibil-
ity of the different representations of the solu-
tion, in the overlapping zones where they coex-
ist [1].

In the problems we are interested in, there
are generally no closed form for the kernel, and
K(M,P ) has to be evaluated thanks to a Fourier
integral, like the following one:

K(M,P ) = 1
2π

∫

R
ei(κ(ξ)x+ξy)dξ (3)

where x = xM − xP > 0, y = yM − yP , and
κ(ξ) = κ+(ξ) is one of the two solutions κ±(ξ)
of the dispersion equation :

Ak(ξ) · k(ξ) = ω2 with k(ξ) =
(
κ(ξ)
ξ.

)
(4)

The choice of κ+ is done as follows. If κ+ =
κ− /∈ R, the evanescent wave which is such that
Im(κ+) > 0, is selected. If κ+, κ− ∈ R, κ+ is
chosen such that

Ak(ξ) · e0 > 0 with eθ =
(

cos θ
sin θ

)
.

In the isotropic case (A = I2), this leads to κ+ =√
ω2 − ξ2 for |ξ| < ω.

The difficulty comes from the function ξ 7→
ei(κ(ξ)x+ξy) which becomes highly oscillating when
x or y increases, with oscillations that accumu-
late near the cutoff values ξ = ±γ, where γ is
defined by Ak(γ) · e0 = 0 (see figure 1). This
makes the numerical evaluation of the kernel
very costly, and motivates the present work.

2 The far-field approximation
A first possibility to avoid an expensive naive
quadrature to evaluate the Fourier integral is
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Figure 1: the function f : η 7→ ℜ
(
ei(κ(ξ)x+ξy)

)
,

ξ = ηe−iα, η ∈ R, a) α = 0, b) α = π
6

to use a far-field approximation of the integral
in (3) when r = d(M,P ) =

√
x2 + y2 is large.

Setting (x, y) = r(cos θ, r sin θ), the integral in
(3) can be rewritten as

∫

R
eirk(ξ)·eθdξ,

so that the phase is stationary at ξg given by
k′(ξg) · eθ = κ′(ξg) cos θ + sin θ = 0. (5)

On the other hand, (4) implies that for all ξ
Ak(ξ) · k′(ξ) = 0, which combined with (4) and
(5), leads to

k(ξg) =
(
κ(ξg)
ξg

)
= ω√

A−1eθ · eθ

A−1eθ.

It means that the main contribution in the in-
tegral comes from the plane wave whose group
velocity vector is aligned with the vector −−→

MP .
Finally, the far-field approximation of the kernel
K by the stationary phase theorem is:

K(M,P ) =
√
ωψ cos θe

iωr
√

A−1eθ·eθ

√
2iπr

(1+O(1/r))

where ψ = −(A−1eθ · eθ)−1/2 (Ae⊥
θ · e⊥

θ )−1 with
e⊥

θ = eθ+π/2. For the isotropic case (A = I2),
the formula can be directly obtained by using
asymptotics of the Hankel function:

K(M,P ) =
√

iω

2πr cos θ eiωr(1 + O(1/r)).

Let us mention that the above formulae are rig-
orously justified by splitting the integrals in two
parts, one part containing the branch points ξ =
±γ, which is proved to decay rapidly with the
distance d(M,P ), and another one around the
stationary point to which the stationary phase
theorem is applied.

3 The deformation of contour in the com-
plex plane

Another approach, inspired by [2], is to move
the path of Fourier integration in the complex
plane. In practice in the HSM method, half in-
tegration paths (ξ > 0 or ξ < 0) are considered
separately. For instance, in the isotropic case,
one can check by Cauchy theorem that

∫ +∞

0
ei(κ(ξ)x+ξy)dξ =

∫

Dα

ei(κ(ξ)x+ξy)dξ

where 0 < α < π/2 and Dα = {ηeiα; η > 0}, as
soon as |y| < x cotα. The advantage is that the
function to integrate on this new path is much
less oscillating (see 1). As a consequence, a
same accuracy is obtained with much less points
of discretization of the integral.

4 Numerical results
Both previous ideas are finally combined to op-
timize the evaluation of the kernel, using the
far-field approximation when d(M,P ) is larger
than 7 wavelengths, and the deformation of the
contour for intermediate values of d(M,P ). This
allows to get a cheap and accurate representa-
tion of the solution. One can see on Figure 2
the spurious effects which appear after 7 wave-
lengths when discretizing the oscillating inte-
gral, which disappear when using far-field for-
mulae. In addition to this illustration of the
benefits of our approach, quantitative speed-up
results will be presented during the talk.

Figure 2: without/with far-field treatment
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