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Solving inverse source wave problem: from observability to observer design
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Abstract

The objective of this work is to propose a practi-
cal method using observers to estimate a source
term of a wave equation, from internal measure-
ments in a subdomain ω. The first part of the
work consists in proving an identifiability result
from classical observability conditions for wave
equations. We deduce that the source recon-
struction is an ill-posed inverse problem (IP) of
order 2. This (IP) is solved using an a sequen-
tial strategy that is proven to be equivalent to a
minimization of a cost functional with Tikhonov
regularization.
Keywords: Observer, Identifiability, Control

1 Statement of the problem

Let T > 0 and Ω be a bounded, connected open
domain of class C2 in Rd. In the spirit of [1], we
consider a scalar wave equation with λ(t)θ(x)
as the source term and (u0, v0) as initial con-
dition. This system can classically be rewrit-
ten as a first-order system in the state-space
Z = H1

0(Ω)× L2(Ω),
{
ż = Az +B(t)θ, in (0, T ),

z(0) = z0,
(1)

z0 =

(
u0

v0

)
, B =

(
0

λ(t)Id

)
, A =

(
0 Id

∆0 0

)
.

Here, A is an unbounded skew-adjoint operator
from D(A) = D(∆0)×H1

0(Ω) into Z, hence the
generator of a C0-semigroup. It is assumed that
the observation subdomain ω contains a domain
satisfying a Geometric Control Condition or, at
least, a multiplier condition see [2].

Restriction to ω of a solution of (1) should
belong to H1

Γ(ω), the subspace of functions in
H1(ω) null on Γ = ∂Ω ∩ ∂ω that we equip with
the equivalent norm ‖·‖H1

ω
= ‖Eω ·‖H1

0 (Ω), where
Eω ∈ L(H1

Γ(ω), H1
0 (Ω)) is given by

Eωφ = argmin
u|ω=φ

‖∇u‖L2(Ω).

We then introduce an observation operator

C =
(
Jω 0

)
,

where Jω is the restriction to ω bounded oper-
ator from H1

0 (Ω) to H1
Γ(ω). With our choice of

norm in H1
Γ(ω), we find C∗ =

(
Eω 0

)t.
Let us then consider an actual wave solution

ǔ modeled as a mild solution ž of (1) for given
and known (u0, v0) and λ(t) but an unknown θ̌
that we want to estimate. This trajectory is sub-
ject to measurements a procedure modeled with
the observation operator C. The noisy measure-
ments are denoted yδ, and typically there exists
δ ∈ R+ such that

‖yδ − Cž‖2L2((0,T );Y) ≤ δ2T,

with Y the observation space to be specified. In
essence, recovering θ̌ from yδ consists in invert-
ing the input-output linear operator

ΨT :

∣∣∣∣∣∣∣∣∣

L2(Ω)→L2((0, T );Y),

θ 7→(t 7→ yδ − CetAz0)

= C

∫ t

0
e(t−s)ABθ ds.

and we will proceed by steps of increasing dif-
ficulties: First, we suppose that for all t, the
measurements yδ(t) belong to Y = H1(ω), be-
fore generalizing to yδ(t) ∈ Y = L2(ω).

2 Observability condition

Let us first prove an observability result, which
by the way, gives the injectivity of ΨT .

Theorem 1 Let λ(t) ∈ H1(0, T ) with λ(0) 6= 0.
There exists T0 such that for T > T0, there exists
a constant Cst

λ (T ) such that
∫ T

0
‖u‖2H1(ω) dt ≥ Cst

λ (T )‖θ‖2H−1(Ω). (2)

Here, we adapt the strategy proposed in [1]
by combining a Volterra equation and initial
condition observability in the H−1 weak norm.
From this observability inequality, we understand
that the observations have to belong to H1(ω)
allowing a stable reconstruction only in a H−1

norm. As a consequence, we face an ill-posed
problem of order 2.
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3 From regularization to observer design

As a first step, let us assume that the measure-
ments belong to H1(ω). To overcome the pa-
rameter lack of regularity in the observability
condition, we need to introduce some a priori
with typically ‖θ̌‖H1

0 (Ω) ≤ M . We hence define
the following cost functional which corresponds
to a generalized Tikhonov regularization strat-
egy for inverting ΨT :

JT (θ) =
ε2

2
‖θ‖2H1

0 (Ω) +
1

2

∫ T

0
‖yδ(t)−uθ‖2H1

ω
dt,

with ε = δM−1. We prove using standard Ti-
khonov regularization arguments:

Theorem 2 Under the assumptions of Theo-
rem 1, for θ̌ ∈ H1

0 (Ω) such that ‖θ̌‖H1
0 (Ω) ≤ M ,

there exists a constant Cst(T ) such that

‖θ̄T − θ̌‖L2(Ω) ≤ Cst(T )
√
M
√
δ, (3)

where θ̄T = argmin
θ∈H1

0 (Ω)

JT (θ).

In order to avoid solving this minimization
with adjoint-based approaches, we propose to
rely on a sequential approach based on the fol-
lowing observer,




˙̂z(t) = Aẑ(t) +Bθ̂(t) + L(t)
˙̂
θ(t), in (0, T )

˙̂
θ(t) =

1

δ2
QL∗(t)C∗(y(t)− Cẑ(t)), in (0, T )

ẑ(0) = z0, θ̂(0) = 0,

(4)
where the operators L(t) =

∫ t
0 e

(t−s)AB and Q
is a compact symmetric positive operator strong
solution of the Riccati equation [3, Part IV, Sec-
tion 1, Theorem 2.1]




Q̇ = − 1

δ2
QL∗C∗CLQ,

Q(0) = M2∆−1
0 .

In fact, we prove the dynamic programming re-
sult:

Theorem 3 The observer θ̂ defined by (4) is an
optimal estimator of θ in the following sense:

θ̂(t) = θ̄t = argmin
θ∈H1

0 (Ω)

Jt(θ).

Let us now move to the more general case
where the measurements are actually in L2(ω).
In our observer definition, we then replace the

adjoint of the observation operator by Fα =(
Eαω 0

)t where Eαω : L2(ω) → D(∆0) is a reg-
ularizing family for Jω defined by

Eαωφ = argmin
u∈H1

0 (Ω)

1

α2
‖u− φ‖2L2(ω) + ‖∇u‖2L2(Ω).

This change is reflected in the definition of the
dynamics Q and θ̂ which becomes





˙̂
θ(t) =

1

δ2
QL∗(t)Fα(y(t)− Cẑ(t)),

Q̇ = − 1

δ2
QL∗FαCLQ.

The operator Q can still by defined using Ric-
cati’s theory as FαC is proved to remain a bounded,
symmetric and positive operator.Then, we show
again that

θ̄t = θ̂(t) = argmin
θ∈H1

0 (Ω)

J α
t (θ),

where, this time, the functional is modified into

J α
T (θ) =

ε2

2
‖θ‖2H1

0 (Ω)+
1

2

∫ T

0
‖yδ(t)−uθ‖2H1

ω,α
dt,

with ‖ · ‖H1
ω,α

= ‖Eαω · ‖H1
0 (Ω), and α =

√
δM−1.

Combining properties about the regularizing fam-
ily and the observability condition leads this
time with m ∈ (1

4 ,
1
2) to

‖θ̄T − θ̌‖L2(Ω) ≤ Cst(T )M1−mδm.

Finally, as a perspective of this work, we will
discuss discretization strategies and generaliza-
tion to the more general case where the source
term decomposes into λ(t, x)θ(x).
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