Solving inverse source wave problem: from observability to observer design

Tiphaine Delaunay^{1,*}, Sébastien Imperiale¹, Philippe Moireau¹

¹Inria — LMS, Ecole Polytechnique, CNRS — Institut Polytechnique de Paris, Palaiseau, France *Email: tiphaine.delaunay@inria.fr

Abstract

The objective of this work is to propose a practical method using observers to estimate a source term of a wave equation, from internal measurements in a subdomain ω . The first part of the work consists in proving an identifiability result from classical observability conditions for wave equations. We deduce that the source reconstruction is an ill-posed inverse problem (IP) of order 2. This (IP) is solved using an a sequential strategy that is proven to be equivalent to a minimization of a cost functional with Tikhonov regularization.

Keywords: Observer, Identifiability, Control

1 Statement of the problem

Let T > 0 and Ω be a bounded, connected open domain of class C^2 in \mathbb{R}^d . In the spirit of [1], we consider a scalar wave equation with $\lambda(t)\theta(x)$ as the source term and (u_0, v_0) as initial condition. This system can classically be rewritten as a first-order system in the state-space $\mathcal{Z} = \mathrm{H}_0^1(\Omega) \times \mathrm{L}^2(\Omega),$

$$\begin{cases} \dot{z} = Az + B(t)\theta, & \text{in } (0,T), \\ z(0) = z_0, \end{cases}$$
(1)

$$z_0 = \begin{pmatrix} u_0 \\ v_0 \end{pmatrix}, B = \begin{pmatrix} 0 \\ \lambda(t) \mathrm{Id} \end{pmatrix}, A = \begin{pmatrix} 0 & \mathrm{Id} \\ \Delta_0 & 0 \end{pmatrix}.$$

Here, A is an unbounded skew-adjoint operator from $\mathcal{D}(A) = \mathcal{D}(\Delta_0) \times \mathrm{H}^1_0(\Omega)$ into \mathcal{Z} , hence the generator of a C^0 -semigroup. It is assumed that the observation subdomain ω contains a domain satisfying a *Geometric Control Condition* or, at least, a multiplier condition see [2].

Restriction to ω of a solution of (1) should belong to $H^1_{\Gamma}(\omega)$, the subspace of functions in $H^1(\omega)$ null on $\Gamma = \partial \Omega \cap \partial \omega$ that we equip with the equivalent norm $\|\cdot\|_{H^1_{\omega}} = \|E_{\omega}\cdot\|_{H^1_0(\Omega)}$, where $E_{\omega} \in \mathcal{L}(H^1_{\Gamma}(\omega), H^1_0(\Omega))$ is given by

$$E_{\omega}\phi = \operatorname*{argmin}_{u_{|\omega}=\phi} \|\nabla u\|_{L^{2}(\Omega)}.$$

We then introduce an observation operator

$$C = \begin{pmatrix} J_{\omega} & 0 \end{pmatrix},$$

where J_{ω} is the restriction to ω bounded operator from $H_0^1(\Omega)$ to $H_{\Gamma}^1(\omega)$. With our choice of norm in $H_{\Gamma}^1(\omega)$, we find $C^* = \begin{pmatrix} E_{\omega} & 0 \end{pmatrix}^t$.

Let us then consider an actual wave solution \check{u} modeled as a mild solution \check{z} of (1) for given and known (u_0, v_0) and $\lambda(t)$ but an unknown $\check{\theta}$ that we want to estimate. This trajectory is subject to measurements a procedure modeled with the observation operator C. The noisy measurements are denoted y^{δ} , and typically there exists $\delta \in \mathbb{R}^+$ such that

$$\|y^{\delta} - C\check{z}\|^2_{L^2((0,T);\mathcal{Y})} \le \delta^2 T,$$

with \mathcal{Y} the observation space to be specified. In essence, recovering $\check{\theta}$ from y^{δ} consists in inverting the *input-output* linear operator

$$\Psi_T: \quad \begin{cases} L^2(\Omega) \to L^2((0,T);\mathcal{Y}), \\ \theta \mapsto (t \mapsto y^{\delta} - Ce^{tA}z_0) \\ = C \int_0^t e^{(t-s)A}B\theta \, \mathrm{d}s \end{cases}$$

and we will proceed by steps of increasing difficulties: First, we suppose that for all t, the measurements $y^{\delta}(t)$ belong to $\mathcal{Y} = H^{1}(\omega)$, before generalizing to $y^{\delta}(t) \in \mathcal{Y} = L^{2}(\omega)$.

2 Observability condition

Let us first prove an observability result, which by the way, gives the injectivity of Ψ_T .

Theorem 1 Let $\lambda(t) \in H^1(0,T)$ with $\lambda(0) \neq 0$. There exists T_0 such that for $T > T_0$, there exists a constant $C^{st}_{\lambda}(T)$ such that

$$\int_0^T \|u\|_{H^1(\omega)}^2 \, \mathrm{d}t \ge C_\lambda^{st}(T) \|\theta\|_{H^{-1}(\Omega)}^2.$$
(2)

Here, we adapt the strategy proposed in [1] by combining a Volterra equation and initial condition observability in the H^{-1} weak norm. From this observability inequality, we understand that the observations have to belong to $H^1(\omega)$ allowing a stable reconstruction only in a H^{-1} norm. As a consequence, we face an ill-posed problem of order 2.

3 From regularization to observer design

As a first step, let us assume that the measurements belong to $H^1(\omega)$. To overcome the parameter lack of regularity in the observability condition, we need to introduce some *a priori* with typically $\|\check{\theta}\|_{H^1_0(\Omega)} \leq M$. We hence define the following cost functional which corresponds to a generalized Tikhonov regularization strategy for inverting Ψ_T :

$$\mathscr{J}_{T}(\theta) = \frac{\epsilon^{2}}{2} \|\theta\|_{H^{1}_{0}(\Omega)}^{2} + \frac{1}{2} \int_{0}^{T} \|y^{\delta}(t) - u_{\theta}\|_{H^{1}_{\omega}}^{2} \mathrm{d}t,$$

with $\epsilon = \delta M^{-1}$. We prove using standard Tikhonov regularization arguments:

Theorem 2 Under the assumptions of Theorem 1, for $\check{\theta} \in H^1_0(\Omega)$ such that $\|\check{\theta}\|_{H^1_0(\Omega)} \leq M$, there exists a constant $C^{st}(T)$ such that

$$\|\bar{\theta}_T - \check{\theta}\|_{L^2(\Omega)} \le C^{st}(T)\sqrt{M}\sqrt{\delta}, \qquad (3)$$

where $\bar{\theta}_T = \underset{\theta \in H_0^1(\Omega)}{\operatorname{argmin}} \mathscr{J}_T(\theta).$

In order to avoid solving this minimization with adjoint-based approaches, we propose to rely on a sequential approach based on the following observer,

$$\begin{cases} \dot{\hat{z}}(t) = A\hat{z}(t) + B\hat{\theta}(t) + L(t)\hat{\theta}(t), & \text{in } (0,T) \\ \dot{\hat{\theta}}(t) = \frac{1}{\delta^2}QL^*(t)C^*(y(t) - C\hat{z}(t)), & \text{in } (0,T) \\ \hat{z}(0) = z_0, \hat{\theta}(0) = 0, \end{cases}$$

(4) where the operators $L(t) = \int_0^t e^{(t-s)A}B$ and Qis a compact symmetric positive operator strong solution of the Riccati equation [3, Part IV, Section 1, Theorem 2.1]

$$\begin{cases} \dot{Q} = -\frac{1}{\delta^2} Q L^* C^* C L Q, \\ Q(0) = M^2 \Delta_0^{-1}. \end{cases}$$

In fact, we prove the dynamic programming result:

Theorem 3 The observer $\hat{\theta}$ defined by (4) is an optimal estimator of θ in the following sense:

$$\hat{\theta}(t) = \bar{\theta}_t = \operatorname*{argmin}_{\theta \in H_0^1(\Omega)} \mathscr{J}_t(\theta).$$

Let us now move to the more general case where the measurements are actually in $L^2(\omega)$. In our observer definition, we then replace the adjoint of the observation operator by $F_{\alpha} = (E_{\omega}^{\alpha} \quad 0)^{t}$ where $E_{\omega}^{\alpha} : L^{2}(\omega) \to D(\Delta_{0})$ is a regularizing family for J_{ω} defined by

$$E_{\omega}^{\alpha}\phi = \underset{u \in H_{0}^{1}(\Omega)}{\operatorname{argmin}} \frac{1}{\alpha^{2}} \|u - \phi\|_{L^{2}(\omega)}^{2} + \|\nabla u\|_{L^{2}(\Omega)}^{2}.$$

This change is reflected in the definition of the dynamics Q and $\hat{\theta}$ which becomes

$$\begin{cases} \dot{\hat{\theta}}(t) = \frac{1}{\delta^2} Q L^*(t) F_{\alpha}(y(t) - C\hat{z}(t)), \\ \dot{Q} = -\frac{1}{\delta^2} Q L^* F_{\alpha} C L Q. \end{cases}$$

The operator Q can still by defined using Riccati's theory as $F_{\alpha}C$ is proved to remain a bounded, symmetric and positive operator. Then, we show again that

$$\bar{\theta}_t = \hat{\theta}(t) = \operatorname*{argmin}_{\theta \in H^1_0(\Omega)} \mathscr{J}^{\alpha}_t(\theta),$$

where, this time, the functional is modified into

$$\mathscr{J}_T^{\alpha}(\theta) = \frac{\epsilon^2}{2} \|\theta\|_{H^1_0(\Omega)}^2 + \frac{1}{2} \int_0^T \|y^{\delta}(t) - u_{\theta}\|_{H^1_{\omega,\alpha}}^2 \mathrm{d}t,$$

with $\|\cdot\|_{H^1_{\omega,\alpha}} = \|E^{\alpha}_{\omega}\cdot\|_{H^1_0(\Omega)}$, and $\alpha = \sqrt{\delta M^{-1}}$. Combining properties about the regularizing family and the observability condition leads this time with $m \in (\frac{1}{4}, \frac{1}{2})$ to

$$\|\bar{\theta}_T - \check{\theta}\|_{L^2(\Omega)} \le C^{\mathrm{st}}(T) M^{1-m} \delta^m$$

Finally, as a perspective of this work, we will discuss discretization strategies and generalization to the more general case where the source term decomposes into $\lambda(t, x)\theta(x)$.

References

- C. Alves, A. Silvestre, T. Takahashi and M. Tucsnak, Solving inverse source problems using observability. Applications to the Euler-Bernoulli plate equation, *SIAM Journal on Control and Optimization*, 48(3):1632–1659, 2009.
- [2] J.L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Masson, Paris, Tome 1.8, 1988.
- [3] Alain Bensoussan, Giuseppe Da Prato, Michel C Delfour, and Sanjoy K Mitter. Representation and control of infinite dimensional systems. Springer Science & Business Media, 2007.