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Dislocation model for hexagonal periodic graphs perturbed along the Zig Zag direction
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Abstract

We consider a periodic graph having the hon-
eycomb symetry that we cut along the ZigZag
direction, the exact location of the cut depend-
ing on a dislocation paramater t. For any t,
we prove the existence of guided waves traveling
along the cut. For some particular frequencies,
those modes exist independently of the quasi-
momentum β.
Keywords: periodic media, spectral the-
ory, guided modes.

1 Setting

We consider the hexagonal infinite graph G of
Figure 1 with L = 1√

3
. For a parameter t ∈

[0, 2L] (see figure 1), we consider the truncated
graph Gt obtained by truncating the infinite graph
G at s = t parallelly to the direction ey (see Fig-
ure 2 for two illustrations of Gt at t = L/2 and
t = 3L/2).

Figure 1: infinite graph G

Figure 2: Gt at t = L/2 and t = 3L/2

We are interested in guided waves, namely
solutions to the wave equation of the form u(x) =
w(x, y)eiβy+ωt, where w is periodic with respect
to y. To be more specific, we denote by E the

set of edges of G in the yellow region of Fig-
ure 1, and by Et the restriction of E to Gt. For
any β ∈ [0, π] (the case β ∈ [−π, 0] resulting
from a time symmetry argument), we define the
sets L2,β(Gt) and H2,β(Gt) of β quasi-periodic
functions

L2,β(Gt) =
{
v s.t v ∈ L2(e), ∀e ∈ Et;

‖u‖2Lµ2 (Gt) =
∑

e∈Et
‖u‖2L2(e)

<∞,

v(x1, x2 + 1) = eiβv(x1, x2)
}
, (1)

H2,β(Gt) = {u ∈ L2,β(Gt) / u ∈ C(Gt);
u ∈ H2(e), ∀e ∈ Et;

‖u‖2H2(Gt) =
∑

e∈E
‖u‖2H2(e) <∞}, (2)

where C(Gt) stands for the set of functions that
are continuous on Gt. We then consider the self-
adjoint operator Aβt defined by

(Aβt u)e = −u′′e , ∀e ∈ Et, (3)

on the domain

D(Aβt ) =
{
u ∈ H2(Gt) /∑

e∈E(M)

u′e(M) = 0, ∀M ∈Mt

}
,

In the previous definition,Mt denotes the set of
vertices of Gt, ue stands for the restriction of u to
the edge e, and u′e(M) is the outward derivative
of ue at the vertexM . In that setting, we can see
that guided waves correspond to eigenvectors of
the operator Aβt . We therefore investigate the
discrete spectrum of Aβt .

2 Main result

The essential spectrum of Aβt is independent of
t, and is periodic of period π/L (with respect
to ω =

√
λ). Moreover, for any β 6= 2π

3 and for
and non negative integer n, σess(Aβt ) has a gap
Gn =]an(β)

2, bn(β)
2[ around the critical value

λn = (ωn)
2 ωn =

π

2L
+ n

π

L
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Remark 1 The frequency λn corresponds to a
frequency of a Dirac point of the dispersion sur-
faces associated with the operator A defined of
the full graph G (having the honeycomb symme-
try).

Our main results, illustrated by the Figure 3
states that there is a spectral flow made of 2n+1
eigenvalues of Aβt inside the gap Gn.

Theorem 2 For any β ∈ [0, 2π3 [∪[2π3 , π[, the
operator Aβt has exactly 2n + 1 eigenvalues in
Gn. Moreover, the dispersion curves t 7→ ω(t)
are strictly increasing.

The proof of the previous result follows the next
three points:

1. We first prove that the number of eigen-
values remains constant in the intervalls
G−n =]an(β)

2, λn[ and G+
n =]λn, bn(β)

2[.

2. We investigate the particular case λ =
λn where explicite computations can be
made.

3. A standard differentiable argument gives
that t 7→ ω(t) are strictly increasing, which
therefore ends the proof.

We point out that our result can be seen as
an extension of the ones of [3], obtained for
the one dimensional Schrödinger equation (with
smooth periodic potential) dislocation models.
More specifically, the first and third points of
the demonstrations rely on the same arguments.
As in [3], the presence of eigenmodes is equiv-
alent to the existence of zeros of a particular
function depending only of the ’bulk’. However,
the lack of continuity of our model at t = L
prevents us to link that to any topological in-
dex (defined as winding number of a continuous
function living on the unit circle) and to refer
to it as bulk edge correspondance (see [4, 5]).

Remark 3 By proving Theorem 2, we also demon-
strate that, for any n ≥ 0, there are 2n+ 1 par-
ticular values tn,k (k ∈ J0, 2n + 1K) of t such
that the corresponding eigenvalues are indepen-
dent of the quasi-momentum β. For instance,
in the case β < 2π

3 ,

tn,k =




L− 2L(n−k)

1+2n 0 ≤ k ≤ n
L+ 2L(k−n)

1+2n n+ 1 ≤ k ≤ 2n

This property is well-known in the case of Zig
Zag tight-binding models [6] (corresponding to
t = 0 or t = L).

Figure 3: Representation of the function t 7→
ω(t) in the gaps G0, G1 and G2 for β = π

3 . The
blue points correspond to eigenvalues indepen-
dent of β.
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