Dislocation model for hexagonal periodic graphs perturbed along the Zig Zag direction

Sonia Fliss¹, Bérangère Delourme²

 $^{1}{\rm POEMS}$ (INRIA-ENSTA-CNRS), Palaiseau, France $^{2}{\rm LAGA},$ Université Sorbonne Paris Nord, Villetaneuse, France

Abstract

We consider a periodic graph having the honeycomb symetry that we cut along the ZigZag direction, the exact location of the cut depending on a dislocation parameter t. For any t, we prove the existence of guided waves traveling along the cut. For some particular frequencies, those modes exist independently of the quasimomentum β .

Keywords: periodic media, spectral theory, guided modes.

1 Setting

We consider the hexagonal infinite graph \mathcal{G} of Figure 1 with $L = \frac{1}{\sqrt{3}}$. For a parameter $t \in [0, 2L]$ (see figure 1), we consider the truncated graph \mathcal{G}_t obtained by truncating the infinite graph \mathcal{G} at s = t parallelly to the direction e_y (see Figure 2 for two illustrations of \mathcal{G}_t at t = L/2 and t = 3L/2).

Figure 1: infinite graph \mathcal{G}

Figure 2: \mathcal{G}_t at t = L/2 and t = 3L/2

We are interested in guided waves, namely solutions to the wave equation of the form $u(x) = w(x, y)e^{i\beta y+\omega t}$, where w is periodic with respect to y. To be more specific, we denote by \mathcal{E} the set of edges of \mathcal{G} in the yellow region of Figure 1, and by \mathcal{E}_t the restriction of \mathcal{E} to \mathcal{G}_t . For any $\beta \in [0, \pi]$ (the case $\beta \in [-\pi, 0]$ resulting from a time symmetry argument), we define the sets $L^{2,\beta}(\mathcal{G}_t)$ and $H^{2,\beta}(\mathcal{G}_t)$ of β quasi-periodic functions

$$L^{2,\beta}(\mathcal{G}_{t}) = \left\{ v \text{ s.t } v \in L_{2}(e), \forall e \in \mathcal{E}_{t}; \\ \|u\|_{L_{2}^{\mu}(\mathcal{G}_{t})}^{2} = \sum_{e \in \mathcal{E}_{t}} \|u\|_{L_{2}(e)}^{2} < \infty, \\ v(x_{1}, x_{2} + 1) = e^{i\beta}v(x_{1}, x_{2}) \right\}, \quad (1)$$

$$H^{2,\beta}(\mathcal{G}_t) = \{ u \in L^{2,\beta}(\mathcal{G}_t) / u \in C(\mathcal{G}_t); u \in H^2(e), \forall e \in \mathcal{E}_t; \|u\|_{H^2(\mathcal{G}_t)}^2 = \sum_{e \in \mathcal{E}} \|u\|_{H^2(e)}^2 < \infty \}, \quad (2)$$

where $C(\mathcal{G}_t)$ stands for the set of functions that are continuous on \mathcal{G}_t . We then consider the selfadjoint operator \mathcal{A}_t^β defined by

$$(\mathcal{A}_t^\beta u)_e = -u_e'', \qquad \forall e \in \mathcal{E}_t, \tag{3}$$

on the domain

$$D(\mathcal{A}_t^\beta) = \left\{ u \in H^2(\mathcal{G}_t) / \sum_{e \in \mathcal{E}(M)} u'_e(M) = 0, \quad \forall M \in \mathcal{M}_t \right\},\$$

In the previous definition, \mathcal{M}_t denotes the set of vertices of \mathcal{G}_t , u_e stands for the restriction of u to the edge e, and $u'_e(M)$ is the outward derivative of u_e at the vertex M. In that setting, we can see that guided waves correspond to eigenvectors of the operator \mathcal{A}_t^{β} . We therefore investigate the discrete spectrum of \mathcal{A}_t^{β} .

2 Main result

The essential spectrum of \mathcal{A}_t^{β} is independent of t, and is periodic of period π/L (with respect to $\omega = \sqrt{\lambda}$). Moreover, for any $\beta \neq \frac{2\pi}{3}$ and for and non negative integer n, $\sigma_{\text{ess}}(\mathcal{A}_t^{\beta})$ has a gap $G_n =]a_n(\beta)^2, b_n(\beta)^2[$ around the critical value

$$\lambda_n = (\omega_n)^2 \quad \omega_n = \frac{\pi}{2L} + n\frac{\pi}{L}$$

Remark 1 The frequency λ_n corresponds to a frequency of a Dirac point of the dispersion surfaces associated with the operator \mathcal{A} defined of the full graph \mathcal{G} (having the honeycomb symmetry).

Our main results, illustrated by the Figure 3 states that there is a spectral flow made of 2n+1 eigenvalues of \mathcal{A}_t^{β} inside the gap G_n .

Theorem 2 For any $\beta \in [0, \frac{2\pi}{3}] \cup [\frac{2\pi}{3}, \pi]$, the operator \mathcal{A}_t^{β} has exactly 2n + 1 eigenvalues in G_n . Moreover, the dispersion curves $t \mapsto \omega(t)$ are strictly increasing.

The proof of the previous result follows the next three points:

- 1. We first prove that the number of eigenvalues remains constant in the intervalls $G_n^- =]a_n(\beta)^2, \lambda_n[$ and $G_n^+ =]\lambda_n, b_n(\beta)^2[$.
- 2. We investigate the particular case $\lambda = \lambda_n$ where explicite computations can be made.
- 3. A standard differentiable argument gives that $t \mapsto \omega(t)$ are strictly increasing, which therefore ends the proof.

We point out that our result can be seen as an extension of the ones of [3], obtained for the one dimensional Schrödinger equation (with smooth periodic potential) dislocation models. More specifically, the first and third points of the demonstrations rely on the same arguments. As in [3], the presence of eigenmodes is equivalent to the existence of zeros of a particular function depending only of the 'bulk'. However, the lack of continuity of our model at t = Lprevents us to link that to any topological index (defined as winding number of a continuous function living on the unit circle) and to refer to it as bulk edge correspondance (see [4,5]).

Remark 3 By proving Theorem 2, we also demonstrate that, for any $n \ge 0$, there are 2n + 1 particular values $t_{n,k}$ ($k \in [0, 2n + 1]$) of t such that the corresponding eigenvalues are independent of the quasi-momentum β . For instance, in the case $\beta < \frac{2\pi}{3}$,

$$t_{n,k} = \begin{cases} L - \frac{2L(n-k)}{1+2n} & 0 \le k \le n \\ L + \frac{2L(k-n)}{1+2n} & n+1 \le k \le 2n \end{cases}$$

This property is well-known in the case of Zig Zag tight-binding models [6] (corresponding to t = 0 or t = L).

Figure 3: Representation of the function $t \mapsto \omega(t)$ in the gaps G_0 , G_1 and G_2 for $\beta = \frac{\pi}{3}$. The blue points correspond to eigenvalues independent of β .

References

- Kuchment, P., and Post, O. (2006). On the spectra of carbon nano-structures. arXiv preprint math-ph/0612021.
- [2] Fefferman, C., and Weinstein, M. (2012). Honeycomb lattice potentials and Dirac points. Journal of the American Mathematical Society, 25(4), 1169-1220.
- [3] Gontier, D. (2020). Edge states in ordinary differential equations for dislocations. Journal of Mathematical Physics, 61(4), 043507.
- [4] Graf, G. M., and Porta, M. (2013). Bulkedge correspondence for two-dimensional topological insulators. Communications in Mathematical Physics, 324(3), 851-895.
- [5] Drouot, A. (2019). The bulk-edge correspondence for continuous honeycomb lattices. Communications in Partial Differential Equations, 44(12), 1406-1430.
- [6] Fujita, M., Wakabayashi, K., Nakada, K., and Kusakabe, K. (1996). Peculiar localized state at zigzag graphite edge. Journal of the Physical Society of Japan, 65(7), 1920-1923.