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Abstract

We propose a domain decomposition method to
solve boundary integral equations applied to the
time-harmonic electromagnetic wave scattering
problem by perfectly conducting objects. Our
entirely surface-based approach is derived from
the formalism of volume interior penalty discon-
tinuous Galerkin methods. The numerical solu-
tion is part of a preconditioned Krylov subspace
method, all in the context of a massively paral-
lel industrial code. Accuracy and efficiency of
this method are illustrated with numerical sim-
ulations.
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1 Introduction

The time-harmonic electromagnetic wave scat-
tering problem by a perfectly conducting object
Q consists in finding the scattered electromag-
netic fields E and H satisfying

V xE+ikZgH =0 in R\ Q,
VxH-ikZ;'E=0 in R?\ ,
nx E=—nxE®" on I' = 09,

where k is the wave-number, Z is the impedance
in vacuum, n is the outward-pointing normal
vector to © and E™ is the incident electric field.
Uniqueness of the solution is guaranteed by a
Silver-Miiller radiation condition at infinity,

lim |z|(Z)gHxZ —E)=0, unif inZ= Sy

The scattered electromagnetic fields can be ob-
tained using the Stratton-Chu formulas,

1 _
E=-ik7J and H= Z—ICJ in R\ Q,
0

where 7 and K denote respectively the electric
and magnetic potential operators defined from

the single-layer vector and scalar potential S by

TI = %v (Sdivpd) + 8T and KJ = V x 87,
K

_exp(—ikr)

Sh= /F G(| - —y))A(y) ds,. C(r)

The electric current J = Zon x (H 4+ H™),
where H™ is the incident magnetic field, can
then be obtained by solving one of the following
boundary integral equations

ikTI = (n x E™) x n on T,

4rr

(EFIE)
1 .
§J —KI=Zy(n xH"™) onT, (MFIE)

a(EFIE) + (1 — a)(MFIE) onT, (CFIE)

where T is the tangential trace of T, K is the
principal value of twisted tangential trace of IC
and o € (0,1).

2 Discontinuous surface formulation

We consider a non-overlapping partitioning I’y
forn=1,..., N of the surface I' and we denote
Ynm = I'n N Ty, the interfaces between two ad-
jacent subdomains. The derivation of the vari-
ational weak formulation for the discontinuous
EFIE requires to enrich the Sobolev functional
space associated with the current J. After re-
stricting the EFIE to each subdomain, testing
it with an appropriate test-function, integrating
on each subdomain and integrating by parts, we
sum over all the subdomains and finally obtain:
Find J € @Zzl L2(divr,,,T',,) such that

aF(J>V) +a:7t(J>V) +p:(J,V)
N .
— Z (nxE™) xn,v,)p
n=1

for any v € @), L(divr,,T,). The bilinear
form ar comes from the classical EFIE formula-
tion and is given by

N N
1
ar(J,v) = Z Z o (Snmdivr,, Jm, dive, va)p,

n=1m=1

+1iK <Snmea Vn>1"n )
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where S,,, : I';, — I, is the restriction of
the single-layer operator S. The bilinear form
aiﬂ contains flux terms coming from integration
by parts on the open surfaces I';, to which a
consistency term is added to get a symmetric or

an anti-symmetric formulation,

N
1 .
az(J,v) = - DD (Sumdive, I, [Viy,,,)

m=1 Ynm

N
1 .
+ ” Z Z (Snmdivr,, vins [Ty ), 0

m=1Ynm

where [ -], denotes the normal jump operator at
contour . The choice of a symmetric or an anti-
symmetric formulation can have an impact on
the convergence of the iterative solver depending
on the choice of the boundary integral equation.
Finally, the bilinear form pJ, generally known
as penalization term in discontinuous Galerkin
volume methods, can take as value one of the
two following expressions
0 _ 5h
A0V = S (s W)
Ynm

N

J,v)=p z (S [Iym s [VIvam)

TYnm

Ynm '

where [ and [ are two positive real numbers
and S\ = - fv Ko(k|-—y|)A\(y) doy, is the two-
dimensional single-layer potential defined on a
contour 7. In comparison with [1], the novelty

is the introduction of a non-local penalization

1
term p, % which defines a H_%(fy) inner prod-
uct and allows to make sense at continuous level
when J € @Y _, L2(divr,,, T'). While the inte-
rior penalty parameter S, depends on the mesh

size h in pY as for instance B, = c|log kh| with
1

¢ > 0, the parameter 8 in p, ? is independent
on the mesh size because it is taken into ac-
count intrinsically into the single-layer operator
S,. Moreover, that involves more robustness in
the convergence of the iterative solver when the
mesh size tends to zero. The variational formu-
lation for the discontinuous MFIE is not subtle
because no integration by parts is required.

3 Discretization and iterative solution

On each subdomain I',,, we introduce a bound-
ary element space composed of restrictions of
Raviart-Thomas boundary element of lowest de-
gree. We end up with a linear system to solve

Ax = b, where A corresponds to the matrix
coming from the chosen boundary integral for-
mulation, x is the unknown vector and b the
right hand-side composed of incident data. The
matrix equation is then solved using a GMRes
solver, for which we propose a block-diagonal
Jacobi preconditioner where the diagonal blocks
are associated with individual subdomains.

4 Numerical results

Numerical simulations show the accuracy of the
approximation method compared to a classical
boundary element solution. Figure 1 depicts the
surface total electric current on a perfectly con-
ducting cube of side 1m, at frequency 1GHz,
using the EFIE formulation. The global mesh
is partitioned into ten subdomains using Metis
and admits non-conformities in the top face.
The approximate solution is computed from a
symmetric discontinuous Galerkin formulation

_1
using penalization p, *? where 8 = 1. Table 1

(a) Domain par- (b) Reference so- (¢) Approximate
titioning lution solution

Figure 1: Surface total electric current on a cube

shows L2-errors on jump at interfaces between
subdomains and on radar cross-sections.

] Mesh H Jump error ‘ RCS error ‘
Refined 1.19-1073 | 1.79-10~%
Coarse 3.30-1073 | 3.27-1073

Non-conformal || 3.42-1073 | 3.26-103

Table 1: Comparison of L? errors between con-
formal and non-conformal meshes.
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