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Abstract

We propose a domain decomposition method to
solve boundary integral equations applied to the
time-harmonic electromagnetic wave scattering
problem by perfectly conducting objects. Our
entirely surface-based approach is derived from
the formalism of volume interior penalty discon-
tinuous Galerkin methods. The numerical solu-
tion is part of a preconditioned Krylov subspace
method, all in the context of a massively paral-
lel industrial code. Accuracy and efficiency of
this method are illustrated with numerical sim-
ulations.
Keywords: Boundary integral equations, elec-
tromagnetism, domain decomposition methods,
discontinuous Galerkin methods.

1 Introduction

The time-harmonic electromagnetic wave scat-
tering problem by a perfectly conducting object
Ω consists in finding the scattered electromag-
netic fields E and H satisfying





∇×E+ iκZ0H = 0 in R3 \ Ω,
∇×H− iκZ−1

0 E = 0 in R3 \ Ω,
n×E = −n×Einc on Γ = ∂Ω,

where κ is the wave-number, Z0 is the impedance
in vacuum, n is the outward-pointing normal
vector to Ω and Einc is the incident electric field.
Uniqueness of the solution is guaranteed by a
Silver-Müller radiation condition at infinity,

lim
|x|→∞

|x| (Z0H× x̂−E) = 0, unif. in x̂ =
x

|x| .

The scattered electromagnetic fields can be ob-
tained using the Stratton-Chu formulas,

E = −iκT J and H =
1

Z0
KJ in R3 \ Ω,

where T and K denote respectively the electric
and magnetic potential operators defined from

the single-layer vector and scalar potential S by

T J =
1

κ2
∇ (SdivΓJ) + SJ and KJ = ∇× SJ,

Sλ =

∫

Γ
G(| · −y|)λ(y) dsy, G(r) =

exp(−iκr)

4πr
.

The electric current J = Z0 n × (H + Hinc),
where Hinc is the incident magnetic field, can
then be obtained by solving one of the following
boundary integral equations

iκTJ = (n×Einc)× n on Γ, (EFIE)
1

2
J− KJ = Z0(n×Hinc) on Γ, (MFIE)

α(EFIE) + (1− α)(MFIE) on Γ, (CFIE)

where T is the tangential trace of T , K is the
principal value of twisted tangential trace of K
and α ∈ (0, 1).

2 Discontinuous surface formulation

We consider a non-overlapping partitioning Γn

for n = 1, . . . , N of the surface Γ and we denote
γnm = Γn ∩ Γm the interfaces between two ad-
jacent subdomains. The derivation of the vari-
ational weak formulation for the discontinuous
EFIE requires to enrich the Sobolev functional
space associated with the current J. After re-
stricting the EFIE to each subdomain, testing
it with an appropriate test-function, integrating
on each subdomain and integrating by parts, we
sum over all the subdomains and finally obtain:
Find J ∈ ⊕N

m=1 L
2
t (divΓm ,Γm) such that

aΓ(J,v) + a±γ (J,v) + p∗γ(J,v)

=
N∑

n=1

〈
(n×Einc)× n,vn

〉
Γn

,

for any v ∈ ⊕N
n=1 L

2
t (divΓn ,Γn). The bilinear

form aΓ comes from the classical EFIE formula-
tion and is given by

aΓ(J,v) =
N∑

n=1

N∑

m=1

1

iκ
⟨SnmdivΓmJm,divΓnvn⟩Γn

+ iκ ⟨SnmJm,vn⟩Γn
,
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where Snm : Γm −→ Γn is the restriction of
the single-layer operator S. The bilinear form
a±γ contains flux terms coming from integration
by parts on the open surfaces Γn to which a
consistency term is added to get a symmetric or
an anti-symmetric formulation,

a±γ (J,v) = − 1

iκ

N∑

m=1

∑

γnm

⟨SnmdivΓmJm, [v]γnm⟩γnm

± 1

iκ

N∑

m=1

∑

γnm

⟨SnmdivΓmvm, [J]γnm⟩γnm
,

where [ · ]γ denotes the normal jump operator at
contour γ. The choice of a symmetric or an anti-
symmetric formulation can have an impact on
the convergence of the iterative solver depending
on the choice of the boundary integral equation.
Finally, the bilinear form p∗γ , generally known
as penalization term in discontinuous Galerkin
volume methods, can take as value one of the
two following expressions

p0γ(J,v) =
βh
κ

∑

γnm

⟨[J]γnm , [v]γnm⟩γnm
,

p
− 1

2
γ (J,v) = β

∑

γnm

⟨Sγnm [J]γnm , [v]γnm⟩γnm
,

where βh and β are two positive real numbers
and Sγλ = 1

2π

∫
γ K0(κ| ·−y|)λ(y) dσy is the two-

dimensional single-layer potential defined on a
contour γ. In comparison with [1], the novelty
is the introduction of a non-local penalization
term p

− 1
2

γ which defines a H− 1
2 (γ) inner prod-

uct and allows to make sense at continuous level
when J ∈ ⊕N

m=1 L
2
t (divΓm ,Γm). While the inte-

rior penalty parameter βh depends on the mesh
size h in p0γ as for instance βh = c| log κh| with

c > 0, the parameter β in p
− 1

2
γ is independent

on the mesh size because it is taken into ac-
count intrinsically into the single-layer operator
Sγ . Moreover, that involves more robustness in
the convergence of the iterative solver when the
mesh size tends to zero. The variational formu-
lation for the discontinuous MFIE is not subtle
because no integration by parts is required.

3 Discretization and iterative solution

On each subdomain Γn, we introduce a bound-
ary element space composed of restrictions of
Raviart-Thomas boundary element of lowest de-
gree. We end up with a linear system to solve

Ax = b, where A corresponds to the matrix
coming from the chosen boundary integral for-
mulation, x is the unknown vector and b the
right hand-side composed of incident data. The
matrix equation is then solved using a GMRes
solver, for which we propose a block-diagonal
Jacobi preconditioner where the diagonal blocks
are associated with individual subdomains.

4 Numerical results

Numerical simulations show the accuracy of the
approximation method compared to a classical
boundary element solution. Figure 1 depicts the
surface total electric current on a perfectly con-
ducting cube of side 1m, at frequency 1GHz,
using the EFIE formulation. The global mesh
is partitioned into ten subdomains using Metis
and admits non-conformities in the top face.
The approximate solution is computed from a
symmetric discontinuous Galerkin formulation
using penalization p

− 1
2

γ where β = 1. Table 1

(a) Domain par-
titioning

(b) Reference so-
lution

(c) Approximate
solution

Figure 1: Surface total electric current on a cube

shows L2-errors on jump at interfaces between
subdomains and on radar cross-sections.

Mesh Jump error RCS error
Refined 1.19 · 10−3 1.79 · 10−4

Coarse 3.30 · 10−3 3.27 · 10−3

Non-conformal 3.42 · 10−3 3.26 · 10−3

Table 1: Comparison of L2 errors between con-
formal and non-conformal meshes.
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