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Abstract

We study the time-harmonic scattering by a het-
erogeneous object covered with a thin layer of
randomly distributed nanoparticles. We pro-
pose, via a multi-scale asymptotic expansion of
the solution, an effective model where the layer
of particles is replaced by an equivalent bound-
ary condition. Under the assumption that the
particles are distributed given a stationary and
ergodic random point process, we prove that the
so-called corrector problems are well-posed and
establish quantitative error estimates between
the original and effective solutions.
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1 Introduction

Let us consider an infinite plane, denoted ¥g :=
{zq = 0}, covered by a thin layer of width ehp,
of randomly distributed particles P of size e.
Let D¥ := R x Rt \ P¥ be the half space
above Yo outside the particles P2 for a given
distribution.

For a given source function f € L?(D¥) whose
support lies far away from the layer, we look for

the solution u of the Helmholtz equation
2
—Auf — k*ug = f

4 w
in D¢

where k is the wavenumber. The infinite plane
models a multilayer object through a Robin bound-
ary condition

Vuy -eq=~uf on X,

where v € C is such that Im[y] > 0. At the
boundary of the particles 9P, we impose to the
field either a homogeneous Dirichlet condition

w __
us =0

on 0P

or a homogeneous Neumann boundary condition
Vud -n=0 on OPZ.

Finally, the problem formulation has to be com-
pleted by a radiation condition.

Let L denote the infinite strip L := R4 x
[0, hr, + 6] where 6 > 0. Let {x,}* denote the
point process corresponding to the centers of the
particles. Let B(z%) be the particle with radius
1 centered at z%. We suppose that {z,}¥ is
stationary and ergodic and that the particles lie

in L at least at a distance of § from one an-
other. We introduce P¥ := U B(x;)) the set of

n
particles in L and PY := UsB(w;’) the set of
n
particles of size € in the rescaled strip L¢ :=¢L.
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2 A formal asymptotic expansion
Let D% := R x (0,eH) \ P¥ and D oo i=
R4~ x [eH, +00) for a given H > 0.
We propose the following Ansatz for u¥ :

X, Tq .
a(@) =3 (U™ (2 25 £ s (@) in Do

neN
Ly Td .

= E en g NF (a:,‘;—”,—) in D%
el e

neN

The so-called far-field terms ' depend
only on the macroscopic variable ¢ := (x,, z4)
and the so-called near-field terms Uy, NE depend
on the tangential components «, of & and on the
microscopic variable y := z/e.

We impose that, Vn € N, Uy, NE Gerifies for
all z, € R1
- vyu € Rdil: lim U;;)’NF(:BII; ymyd) =0 a.S.,

Yd—r+00
- Vya € RY, (w,y,) = U N (29, ya) stationary.

After injecting the development into the equa-

tions verified by v, we obtain for all n € N

w,FF .
- Up verifies :

V& € D. oo, —Au T () — K2 PP (x) = £, (1)

n

and the radiation condition.

-Uy NE satisfies a Laplace-type problem pa-
rametrized by «, and set in an infinite half-space
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with a Robin bc on ¥ and either a Dirichlet or Theorem 2 If the compatibility condition —yug’ FFL
Neumann bc on 9P¢. This problem depends on Dz uy FE 5., = 0 holds, then there exists a unique

w,NF w,NF
Unfl ’Un72
w,F'F
U, 1 -

and the far-field terms s’ FE and

We still need to determine a boundary con-
dition for uﬁ’FF on X.g. This condition will
arise as a necessary condition for the existence
and uniqueness of the near-field terms.

3 Dirichlet boundary condition on 9P

Let D¥ := R¥1x (0, H)\P* URY ! x (H, +o0).
In order to study the well-posedness of the prob-
lem verified by Uy, NE for n = 0,1,2 we con-

sider the following problem : we look for a y,-
stationary solution U“ to

~AU®  =V-Gi* inD¥
VU® -n =GY on X
U* =0 on 9P (2)
[VU“ -n] L =G

We suppose here that G1, G2 and G3 are y, -

stationary processes s.t. G1* € L?(Q, L3(D¥)),

Gy € Li(Q x ), GY € LI(Q x Xg), q €

(2,400]. We introduce the following space :
Ho = {a.s. U¥ € H (D*)|

Vya € RT (w,y,) = 1pU¥(y,, yq) stationary,

+o00
U® =0 on OP¥, IE[/ ]lDw|VU“|2dyd] <+oo}.
0

Under additional assumptions on {x;, }nen+, Ho
can be proven to be a Hilbert space. [2]

Theorem 1 In this setting, there exists a unique
solution U in Ho to (2). Moreover, there exists
ceR st as. lim UY=ec

Yqg—r+00
By imposing that a.s.  lim U} = 0, we get
Yq—r+00
w,FF w,FF (1 w,FF
Uy sy =0anduy” " s, = ¢ Opug T sy

(1) .

where ¢’ is the limit at +00 of a profile func-
tion solution of (2).

4 Neumann boundary condition on 0P¥

We study the existence and uniqueness of Uy, NE
for n < 2. First UWNF —UfNF WFF|EEHXDw
verifies

—AUPNT =0 in D¥

vUeNt on =y s, on Yo

VU;J’NF.ﬁ = —VHUO’FF|EEH -m, on OP¥ (3)
[ijid’ N TL:| o - aﬁl)dug FF‘EaH

solution U NE4o (3) defined up to a constant in

7‘[ = {U S L2(97Hlloc(Dw))|
Vys € R+, ]lD‘VU'('v:US

+oo ~
E [/ ]lDw|VU°’|2dyd] < —i—oo} .
0

Given a quantitative mizing assumption on {T¥ },,
for d =3, this solution can be constructed to be
vy, -stationary. It then verifies lim U1 = 0.

Yd—r 00

) stationary,

The proof via regularization relies on classical
arguments in stochastic homogenization. [3]

Applying a similar method to U3” NF, the

compatibility condition gives us the boundary

.. FF
condition for u;""" on X.py

= a(()2) FF—I—Z a(2)3 uo —l—cz(2)82

1=1,2

Vud ' fpyut ™

The constants a(?) are computed via profile func-
tions solution of type (3) problems.

5 Effective model and error estimates

JFF
Fy euy’

condition and on Y. g

(DWRRES uo verifies (1), the radiation

(D) —ac())vaanrvzs—O

(N) Vg ..+ (vfsa )vgg —€ Z a; 8171)25

1=1,2

—&—af)@givg,s =0.

Theorem 3 (Error estimates for Dirichlet)
For all M,R > 0,

H+M 3
sup E [][ / U — g |2 dx] = o(e).
R>0 Or JH

Error estimates in the Neumann case are still
in progress.
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