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Abstract

We study volume integral equation (VIE) re-
formulations of the inhomogeneous Helmholtz
equation with piecewise constant refractive in-
dex on inhomogeneities with rough, possibly frac-
tal, interface. We focus in particular on the case
of scattering by the Koch snow�ake. To obtain
a numerical approximation we replace the inho-
mogeneity by a smoother �prefractal� approxi-
mation, and solve the VIE on the prefractal us-
ing piecewise constants on a suitable triangula-
tion. Using the concept of Mosco convergence
we prove the convergence of the corresponding
Galerkin approximations on the prefractals to
the true solution of the VIE on the fractal in
the joint limit as the pre-fractal level j → ∞ and
mesh width h → 0. We discuss the relationship
between the convergence rate of the method and
the Hausdor� dimension of the fractal boundary
and present supporting numerical results.
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1 Motivation

We recall the classical Helmholtz transmission
problem in Rd, d = 2, 3: given wavenumbers

ki, ke > 0, an incident plane wave uinc = eiked̂·x,
|d̂| = 1, and a bounded Lipschitz open set D ⊂
Rd, �nd an interior �eld ui ∈ H1(D) and an
exterior �eld ue ∈ H1,loc(Rd \D) such that

∆ui + k2i u = 0 in D, (1)

∆ue + k2eu = 0 in Rd \D, (2)

ue = ui on ∂D, (3)

∂nue = a∂nui on ∂D, (4)

where a > 0 is a coupling constant, and the
scattered �eld ue − uinc satis�es the Sommer-
feld radiation condition (SRC) at in�nity. For
bounded LipschitzD, the problem (1)-(4) is well-
posed, and can be recast as a system of bound-
ary integral equations (BIEs) on ∂D [1], which,
when ∂D is piecewise smooth, can be solved nu-
merically using the boundary element method.

Figure 1: Scattering of a plane wave by the Koch
snow�ake, with ke = 30 and ki = 45.

However, for general non-Lipschitz D, such
as the Koch snow�ake, which has fractal bound-
ary, the transmission problem (1)-(4) and its
BIE reformulation no longer make sense, be-
cause one does not in general have well-de�ned
Dirichlet and Neumann trace operators onto ∂D.
The question we investigate in this work is: how
can we pose �transmission problems� on such
sets, and how can we e�ciently approximate
their solutions numerically?

2 Inhomogeneous Helmholtz equation and

VIE reformulation

For general bounded open D ⊂ Rd with |∂D| =
0, in place of the transmission problem (1)-(4)
we seek a solution u ∈ H1,loc(Rd) of the inho-
mogeneous Helmholtz equation

∆u+ k2en(x)u = 0, (5)

with refractive index

n(x) =

{
k2i /k

2
e , x ∈ D,

1, x ∈ Rd \D,
(6)

such that the scattered wave usca = u − uinc,
which should satisfy the equation

∆usca + k2en(x)u
sca = k2ef,
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where f = (1−n)uinc, satis�es the SRC at in�n-
ity. The problem is well-posed (by a standard
Riesz-Fredholm theory argument), and can be
reformulated equivalently as a VIE on D via the
Lippmann-Schwinger equation (LSE) (cf. [3�5]):

(I + k2eV (1− n))usca = F, on D, (7)

where V is the Newton potential, de�ned by

V ϕ(x) =

∫

D
Φ(x, y)ϕ(y) dy, ϕ ∈ L2(D),

with Φ denoting the fundamental solution of
(∆ + k2e)u = 0, and F = −k2eV f . It is well
known that V : L2(D) → H2(G) is bounded,
and hence V : L2(D) → L2(G) is compact, for
any bounded open D,G ⊂ Rn. Hence the LSE
operator is a compact perturbation of the iden-
tity operator on the space L2(D), and by the
well-posedness of (5) and the equivalence of the
latter with (7), equation (7) is well-posed.

3 Discretization and numerical analysis

To discretize (7) we replace D by a polygonal or
polyhedral �prefractal� approximation Dj , and
then compute an approximate solution uscaj of
(7), with D replaced by Dj , using a Galerkin
piecewise constant approximation on a convex
mesh of Dj . To prove convergence of uscaj to
usca we use the notion of Mosco convergence,
which implies convergence of Galerkin solutions
for operators that are compact perturbations of
coercive operators [2].

De�nition 1 Let W and Wj, for j ∈ N, be

closed subspaces of a Hilbert space H. We say

Wj Mosco converges to W if

(i) ∀w ∈ W , ∃wj ∈ Wj, j ∈ N, s.t
∥wj − w∥H → 0 as j → ∞;

(ii) if {Wjm} is a subsequence of {Wj} and

wm ∈ Wjm with wm ⇀ w, then w ∈ W .

Applying this de�nition with H = L2(B) for
some ball B containing D and Dj , we can prove
Mosco convergence of L2(Dj) to L2(D), and
hence of uscaj to usca, under quite general condi-
tions on the prefractal approximations Dj .

WhenDj ⊂ D for each j we also have asymp-
totic quasi-optimality, so that for su�ciently large
j the Galerkin error can be controlled in terms
of the best approximation error of u ∈ L2(D)
by elements vh, for which we have

∥u− vh∥L2(D) ≤ ∥u∥L2(D\Dj)
+ ∥u− vh∥L2(Dj).

Hence the best approximation error comprises
two parts - the �rst due to the approximation of
D by Dj , and the second due to the approxima-
tion of u onDj by a piecewise constant function.
Since u ∈ H1(D), we have the standard bound

∥u− vh∥L2(Dj) ≤
hj
π
∥u∥H1(D),

where hj is the maximum mesh width on Dj ,
and since u ∈ H2(D) ⊂ C(D) we have

∥u∥L2(D\Dj)
≤ |D \Dj |1/2∥u∥C(D).

The magnitude of |D \Dj | depends on the frac-
tal dimension of the boundary ∂D, which af-
fects how well it can be approximated by poly-
gons/polyhedra. For the particular case of the
Koch snow�ake we investigate the correspond-
ing errors for di�erent choices of Dj and hj , in-
cluding the standard prefractal approximations
(unions of triangles), and the �pixellations� com-
monly used in VIE solvers e.g. VINES [6].
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