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Abstract

In this research we demonstrate the precondi-
tioning properties of an approximation of the

Magnetic-to-Electric operator applied to the EFIE

(Electric Field Integral Equation) when solving
electromagnetic scattering problems. For this
we use a Bempp implementation and show a
number of numerical comparisons against other
preconditioning techniques like the Calder6on Pre-
conditioner.
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1 Introduction

When modelling electromagnetic scattering of
PEC objects we resort to Maxwell’s Equations.
There are many numerical methods to solve this
problem, but specifically when modelling scat-

tering in unbounded domains, we resort to Bound-

ary Elements Methods to solve them, where the
electromagnetic field can be calculated from the
representation formula:

T(p)(x) = i / p(y)G(x,y)

1 )
— —Vx | G(x,y)Divrp(y)dI'(y),
K T

K(p)(x) := curly /F G(x,y)p(y)dT(y)
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To find e(x) we can often use the Electric
Field Integral Equation that comes from apply-
ing traces to (1):
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However, the EFIE being a First Kind Fred-
holm operator, needs a regulariser, namely R.:
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One if the most known preconditioners for
the EFIE is the so-called Calderén Precondi-
tioner [2], which is the very same EFIE operator
and has the property of transforming the EFIE
into a Second Kind Fredholm operator:

S2=C, — i

which is very effective and robust, but has
the disadvantage of needing from a barycentric
discretisation of the mesh. Hence, the main ob-
jective of this research is to propose and test
an alternative preconditioner that does not re-
quire mesh refinements and keeps the Calderén
Preconditioner robustness.

2 MtE Preconditioner for the EFIE

A good alternative for a regulariser R is the
exact Magnetic-to-Electric (MtE) operator:
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which can be easily seen to result in a Second
Kind Fredholm operator when applied to Sj:

VIS, = G - cn> )

However, the application of the MtE is not
practical as its computation is as expensive as
the solution of the EFIE itself. In [1] a lo-
cal surface approximation of the MtE for time-
harmonic Maxwell’s equations was developed.
In particular, the authors propose the following
approximation operator to the MtE:
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where
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J = Gradp%DivF — curlp%curlp.
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In [1] the authors propose a Padé approx-
imation of (I + J)'/? which we have adapted
in [3] to build an effective EFIE preconditioner.
The discrete form of the preconditioned system
takes the form

Np
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where II; . , involves Schur complements of
sparse operators. In this talk we describe how
this can be solved efficiently and used as a highly
effective preconditioner that is almost as cheap
to evaluate as the unpreconditioned system but
provides similar efficiency to expensive Calderén
preconditioners.

3 Numerical Results

In the following we demonstrate some results
on the unit sphere obtained by implementing
the preconditioner in the boundary element soft-
ware package Bempp. Figure 1 demonstrates
the iteration counts of variants of the MtE pre-
conditioner compared to standard Calderén pre-

conditioning (5?2 ;) and no preconditioning (S 5),

showing that performance is similar to Calderén
preconditioning. Tables 1 and 2 show that the
cost of the MtE preconditioner is much lower
than that of a Calderén preconditioner and only
little more than no preconditioning at all. De-
tails of the implementation of our preconditioner
can be found in [3].
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Formulation | k =37 | k =47 | Kk = b7
Sqh 1.000 1.000 1.000
Si A 19.273 | 15.738 | 16.612

VI Sen | 1148 | 1180 | 2571

Vol ,Sen | 1265 | 1.339 | 1.194
—1

V_}5:Skn | 1.010 | 1.012 | 1.067

) 0sSen | 1010 | 1012 | 1.025

Table 1: T(RS, 1) / T(Sy,n) assembly time ra-
tios comparison between different EFIE formu-
lations on a grid with constant relation & - h.
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Figure 1: Iterations comparison between differ-
ent EFIE formulations on a grid with varying h.
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Table 2: T(RS, ) / T(Sk,n) assembly time ra-
tios comparison between different EFIE formu-
lations on a grid with varying h.
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