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Abstract

Using an asymptotic analysis, we propose an ef-
fective model for solving a time harmonic elec-
tromagnetic scattering problem of an object cov-
ered with a very thin coating of randomly dis-
tributed perfectly conductive particles. To ob-
tain the coefficients of the model, we need to
solve corrector problems set in a half space with
a layer of randomly distributed rescaled parti-
cles. In this paper we explain how to compute
the effective model and show numerical valida-
tions.
Keywords: Random media, asymptotic analysis,
stochastic homogenization, Monte Carlo method.

1 Introduction

We consider a time harmonic electromagnetic
scattering problem from an inhomogeneous ob-
ject covered with a very thin coating of ran-
domly distributed perfectly conducting very small
particles. We want to quantify the effect of this
coating on the radar cross-section, i.e. the en-
ergy reflected in a specific direction. Since the
particle size, distance and coating size are of the
same order and all small compared with the in-
cident wavelength λ, the numerical solution of
Maxwell’s equations becomes extremely costly
in terms of memory size and computation time.
In addition, we do not have access to the exact
distribution particles a given object. To over-
come these difficulties, we assume that the ran-
dom particle distribution follows a given proba-
bility law. In this paper, we consider the 2D case
where the structure is translationally invariant
along the x3 direction. Maxwell’s equations in
TM or TE polarization are then reduced to the
Helmholtz equation with Neumann or Dirichlet
boundary condition on the particles. In this ab-
stract, we focus on the first case.
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2 Statement of the problem

We construct the thin layer as a collection of
particles P ε

n of size ε ≪ λ distributed in the strip
Lε := R×

[
εδ, ε(δ + hL)

]
, δ > 0 , hL > 0, and

spaced from each other by a minimal distance
of εδ. We consider that the particle distribution
is stationary (the distribution law is the same
at any point of Lε), ergodic (spatially averaging
on a large domain corresponds to averaging with
respect to the randomness). Let us now consider
the following problem




−∆uε − k2uε = 0 in Ωε := R× R+ \ ∪nP ε
n

∇uε.n⃗+ γuε = 0 on Σ0 := {x2 = 0}
∇uε.n⃗ = 0 on ∪n ∂P ε

n

uε − ui is outgoing
(1)

with n⃗ the outgoing unitary normal of Ωε, Im(γ) >
0. Note that the impedance condition on Σ0

models a multilayer object. By introducing an
artificial surface ΣεH = {x2 = εH} above the
particles, we perform an asymptotic analysis of
the solution uε and we derive the following ef-
fective model




−∆vε − k2vε = 0 in R× (εH,+∞)

∇vε.n⃗+
(
γ − εa

(2)
0

)
vε − εa

(2)
1 ∂x1v

ε

− εa
(2)
2 ∂2

x1
vε = 0 on ΣεH

vε − vi is outgoing

(2)

where the coefficients a
(2)
0 , a(2)1 and a

(2)
2 are de-

terministic and obtained from Laplace-type prob-
lems set in a half space with a layer of randomly
distributed rescaled particles. Let us give an ex-
ample of such a problem :




−∆yU (1)
1 = 0 in Ω := R× R+ \ ∪nP 1

n

∇yU (1)
1 · n⃗ = 0 on Σ0

∇yU (1)
1 .n⃗ = −n1 on ∪n ∂P 1

n[
− ∂y2U

(1)
1

]
H

= 0

(3)
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where U (1)
1 is called a profile function and a

(2)
2

coefficient is given by

a
(2)
2 = E

[
2

∫

Ω
∂y1U

(1)
1 +

∫

Ω
χ{y2≤H}

−
∫

∪n∂P 1
n

U (1)
1 n1

]
=: E

[
F
(
U (1)
1

)]
. (4)

3 Numerical method description

To simulate the random environment, we con-
sider a Poisson point process for the center of
the particles. We set a filling rate ρ ∈ (0, 1)
and then the average density is given by ν =
ρ strip area

particle area . The number of particles in the
strip follows the Poisson distribution with pa-
rameter ν : P(Npart = m) = e−ν νm

m! . Finally, we
sample the centers uniformly in the strip. As in
stochastic homogenization [1], we first penalize
the profile problems by replacing, for example
in (3), −∆yU (1)

1 = 0 by −∆yU (1)
1,R + 1

RU
(1)
1,R = 0

with R > 0. We then 1) truncate the domain
in the y1 direction (y1 ∈ (−T/2, T/2)), 2) pre-
scribe periodic conditions and 3) bound the do-
main in the y2 direction by a DtN operator on
a ΣL boundary

∇yU (1)
1 .n⃗ = −2π

T

∑

m∈Z
|m|

(
U (1)
1 , ϕm

)
L2(ΣL)

ϕm(y1) ,

(5)
where ϕm(y1) =

1√
T
e

2imπ
T

y1 , ∀m ∈ Z. If U (1)
1,T,R(ω)

denotes such an approximated profile function,
the coefficient given by (4) is then approximated
by

a
(2)
2 ≈ lim

T→+∞
F
(
U (1)
1,T,R(ω)

)
. (6)

Figure 1(a) illustrates this convergence. We can
also use the ergodicity and approximate the co-
efficient by

a
(2)
2 ≈ lim

T→+∞
E
[
F
(
U (1)
1,T,R(ω)

)]
. (7)

To compute this E
[
F
(
U (1)
1,T,R(ω)

)]
, we use a Monte-

Carlo method and consider M independent and
identically distributed samples :

a
(2)
2 ≈ lim

T,M→+∞
1

M

M∑

m=1

F
(
U (1),m
1,T,R (ω)

)
. (8)

This technique is applied for M = 100 and M =
500 in Figure 1(b). Note that the convergence
is achieved for smaller boxes T . As a conse-
quence, it is interesting to play on the box size
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(b) Monte-Carlo
Figure 1: Convergence of a(2)2 w.r.t. T.

and the number of samples to accelerate the con-
vergence.
To validate the method, we consider a scattering
problem with an incident plane wave with angle
θ = π/3. Below are the real part of the ref-
erence solution and the effective solution, both
obtained by a finite element discretization for
2GHz, ε = 10−4, γ = k(1 − i), hL = 10 and
ρ = 0.4

Figure 2: Reference solution

Figure 3: Effective solution

We plot bellow the difference between the re-
flection coefficient of those two solutions with
respect to ϵ for γ = ik, T = 1500ε, ρ = 0.4.
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