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Solving the water-waves problem with Laplace’s free-space Green’s function
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Abstract
We present a novel boundary integral equation
(BIE) formulation for the water-waves problem
based solely on the free-space Green’s function
for Laplace’s equation. The method relies on
a complex coordinate-stretching to render the
propagative waves exponentially decaying, and
thus more amenable to truncation. The for-
mulation uses only simple function evaluations
(e.g. complex logarithms and square roots) and
thus avoids the computation of the expensive
problem-specific Green’s function. We show through
a numerical example that the truncation errors
are exponentially small with respect to a trun-
cation parameter `.
Keywords: Boundary integral equations, per-
fectly matched layers, water waves, surface waves

1 Introduction
We consider the time-harmonic water waves prob-
lem [1], expressed in terms of the velocity po-
tential ϕ:

∆ϕ = 0 (Ω) (1a)
∂ϕ

∂ν
− ω2

g
ϕ = 0 (ΓFS) (1b)

∂ϕ

∂ν
= f (ΓO ∪ ΓB) (1c)

where ΓFS = {(x1, x2) : x1 ∈ R, x2 = 0} denotes
the free-surface, ΓB denotes the bottom topog-
raphy, ΓO represents immersed obstacles, and
f is compactly supported source term. It is
assumed that the bottom is of constant depth
d except for a compactly supported perturba-
tion. Finally, the domain Ω is the region out-
side ΓO lying between ΓFS and ΓB. As is well
known, an additional radiation condition has to
be imposed to recover uniqueness of the solu-
tions (and to guarantee that the waves are “out-
going"). This condition may be expressed as

∫

|x1|=R
|ϕ,1 − ikϕ|2 dS = o(1) as r →∞, (2)

with k ∈ R+ the solution of k tanh(kd) = ω2/g.

Because ΓFS and ΓB are unbounded curves,
solving the water waves problem by boundary
integral equation methods usually requires the
use of a problem specific Green’s function G.
Expressions for such Green’s function involve
expensive integrals which must be approximated
numerically [1, Chapter 1]. In this work we
show that it is possible to use the inexpensive
free-space Green’s function for Laplace’s equa-
tion, G∆, together with the perfectly matched
layer (PML) truncation technique, to obtain an
efficient boundary integral formulation of (1) .
This is essentially a PML-BIE technique, as re-
cently put forward by Wangtao Lu and collab-
orators [2].

2 PML-BIE method
Adopting the change-of-variables point of view
for PMLs, we consider a vector-valued transfor-
mation τ : R2 → C2 mapping physical points
in R2 into complex points in C2. Letting Jij =
∂τi
∂xj

= τi,j be the Jacobian of the transforma-
tion, it follows that ϕ̃(x) = ϕ(τ(x)) satisfies

∇ · (A(x)∇ϕ̃(x)) = 0, for x ∈ Ω, (3)

where A = |J |J−1(J−1)t. Interestingly, un-
der some reasonable assumptions on τ , equa-
tion (3) is strongly-elliptic, and its free-space
Green’s function G̃ is simply the composition
of G∆ with τ ; i.e. G̃(x,y) = G∆(τ (x), τ (y)).
This suggests a method for solving the PML-
transformed problem based on G̃, the computa-
tion of which involves only the evaluation of a
(complex) logarithm. In what follows we take
τ (x) = (τ(x1), x2) for concreteness, where

τ(x1) =
{
x1 |x1| < a

±a+ (x1 ∓ a)eiθ (±x1 > a)
(4)

for some fixed parameters a and θ.
Upon this change of variables, the bound-

ary conditions (1b-1c) remain unchanged (pro-
vided a is large enough), and the requirement
that ϕ be "outgoing" translates into the require-
ment that ϕ̃ be exponentially decreasing. This
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in turn allows for the following boundary inte-
gral representation of ϕ̃ (despite the unbounded
interfaces):

ϕ̃(r) = S[γ1ϕ̃](r)−D[ϕ̃](r) (5)

where S[σ](r) :=
∫

Γ G̃(r,y)σ(y)dsy andD[σ](r) :=∫
Γ σ(y)γ1,yG̃(x,y)dsy are the single- and double-
layer potentials, and where γ1ϕ̃ := ∇ϕ̃ · Atn
denotes the conormal derivative.

Using classical jump conditions (see [3]), one
finally derives the following second-kind integral
equation :

ϕ̃(x)
2 +D[ϕ̃](x)− ω2

g
SΓF

[τ ′ϕ̃](x) (6)

= SΓO∪ΓB
[f ](x),

where the underscript notation on the single-
layer operator denotes the surface over which
the integration is performed.

In order to obtain a numerical method, the
unbounded interfaces in the equation above are
truncated, and the integrals are discretized us-
ing a Nyström scheme. In the next section we
present some numerical results of the proposed
methodology.

Remark 1 Because ϕ̃ decays exponentially as
|x1| → ∞, and G̃ grows no faster than logarith-
mically, truncating the infinite domains in the
equation above leads to exponentially small er-
rors for the exact solution. This, however, is
not sufficient to show that the truncation errors
of the approximate solution, obtained by solving
the truncated equation, are also exponentially
small. Although numerical examples appear to
indicate that this is the case, a stability result is
still lacking in order to have a rigorous proof.

3 Numerical results
To validate the method, we consider first an ex-
ample with a known f and no other obstacles.
A representation for the exact solution can then
be obtained by a Fourier series method, and the
analytical formula is compared to the numeri-
cal solution in figure 1. As can be seen, the
solutions agree on the interval −10 < x1 < 10,
which is precisely where the PML begins. Inside
the PML, a fast decay in the numerical solution
is observed, as expected.

In order to better assess the truncation error
of the PML-BIE technique, we show in figure 2

Figure 1: Numerical validation against exact so-
lution computed using a Fourier decomposition

a self-convergence study in the presence of ob-
stacles as the size of the PML layer is increased.
An exponential convergence is observed; fur-
thermore, the decay rate seems to agree with a
theoretical prediction error ∼ exp(−k cos(θ)`),
where ` is the length of the PML layer, and
θ is the angle parameter in (4). This validates
the methodology, and opens the venue for inter-
esting theoretical and computational questions
regarding the application of the PML-BIE tech-
nique to problems where the Green’s function
does not oscillate.

Figure 2: Exponential convergence of the error
with respect to the length of PML
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