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Abstract

We study the unique solvability of the discretized
Helmholtz problem with Robin boundary condi-
tions using a conforming Galerkin hp-�nite ele-
ment method.

Instead of employing the classical compact
perturbation argument by Schatz (1974) we will
introduce a new and more direct approach to
prove discrete solvability by mimicking the tools
for proving well-posedness of the continuous prob-
lem directly on the discrete level. In this way,
a computable criterion is derived which certi-
�es discrete well-posedness without relying on
an asymptotic perturbation argument. By using
this novel approach we obtain a) new existence
and uniqueness results for the hp-FEM for the
Helmholtz problem b) examples for meshes such
that the discretization becomes unstable (sti�-
ness matrix is singular), and c) a simple check-
ing AlgorithmMOTZ �marching-of-the-zeros� which
guarantees in an a posteriori way that a given
mesh is certi�ed for a well-posed Helmholtz dis-
cretization.
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1 Setting

In this paper, we consider the numerical dis-
cretization of the Helmholtz problem for mod-
elling acoustic wave propagation in a bounded
Lipschitz domain Ω ⊂ Rd, d = 1, 2, with bound-
ary Γ := ∂Ω. Robin boundary conditions are
imposed on Γ and the strong form is given by
seeking u, s.t.

−∆u− k2u = f in Ω,
∂u
∂n − iku = g on Γ,

(1)

where n denotes the outer normal vector and
k ∈ R\ {0} is the wavenumber.

The well-posedness of this problem follows
from Fredholm's alternative by proving that the

homogeneous problem has only the trivial solu-
tion. This follows from the unique continuation
principle.

We consider the discretization of this equa-
tion (in variational form) by a conforming Galerkin
method. The established proof of well-posedness
for this discretization goes back to [2] and is
based on a perturbation argument: the sub-
space which de�nes the Galerkin discretization
has to be su�ciently �rich� in the sense that
a certain adjoint approximation property holds.
However, this adjoint approximation property
contains a constant which is a priori unknown.
The existing analysis gives insights into how the
parameters de�ning the Galerkin space should
be chosen asymptotically but does not answer
the question whether, for a concrete �nite di-
mensional space, the corresponding Galerkin dis-
cretization has a unique solution.

In this paper, we study whether the con-
forming Galerkin discretization of the Helmholtz
problem with Robin boundary conditions can
lead to a system matrix which is singular and
how to de�ne a computable criterion to guaran-
tee that for a given mesh the conforming Galerkin
discretization is well posed.

As a prelude, we start o� with some general
remarks. Let Ω be a �nite interval (in 1D) or
a bounded polygonal domain (in 2D). We de-
note the L2 (Ω) scalar product by (·, ·) and the
L2 (Γ) scalar product by (·, ·)Γ. H1 (Ω) is the
usual Sobolev space consisting of L2 (Ω) func-
tions whose gradients exist in a weak sense and
belong to L2. The weak form of (1) is given by:

�nd u ∈ H1 (Ω) s.t. ak (u, v) = F (v) ∀v ∈ H1 (Ω) ,
(2)

where a0,k (u, v) := (∇u,∇v)−k2 (u, v), bk (u, v) :=
− i k (u, v)Γ, ak = a0,k+bk, and F (v) = (f, v)+
(g, v)Γ.

Let T = {τi : 1 ≤ i ≤ N} denote a simplicial
�nite element mesh for the domain Ω and for
p ∈ N, let

SpT :=
{
u ∈ C0 (Ω) | ∀τ ∈ T u|τ ∈ Pp

}
.
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The usual nodal basis for SpT is denoted by bi,
1 ≤ i ≤ n, where n := dimSpT . The conforming
hp �nite element discretization of (1) is given by

�nd u ∈ SpT s.t. ak (u, v) = F (v) ∀v ∈ SpT .
(3)

The equivalent matrix formulation is

Aku = F (4)

with the matrix Ak = (αr,s)
n
r,s=1 ∈ Cn×n and

the right-hand side F = (fr)
n
r=1 ∈ Cn given by

αr,s = ak (bs, br) and fr = F (br) .

It is well known that the sesquilinear form ak (·, ·)
satis�es a Gårding inequality in H1 (Ω) as well
as in SpT and Fredholm's alternative tells us that
well-posedness of (2) and (3) follow from unique-
ness. Hence, (3) is well posed if the following
implication holds:

ak (u, v) = 0 ∀v ∈ SpT (5)

=⇒ u = 0. (6)

We note that if we choose v = u in (5) and
consider the imaginary part, we get

0 = Im ak (u, u) = −k2 ‖u‖2Γ =⇒ u|Γ = 0.

2 Main Results

In this section, we present the main results and
refer for the proofs to [1]

Theorem 1 Let Ω ⊂ R be a bounded interval

and consider the Galerkin discretization (3) of

(2) with conforming hp �nite elements. Then,

for any k ∈ R\ {0} the matrix Ak in (4) is reg-

ular.

In two spatial dimensions, an analogue of
Theorem 1 does not hold in that generality as
can be seen from the following example.

Lemma 2 Let α ∈ (0, 1) and the triangulation

T (α) as depicted in Figure 1. Let

kα :=

√
6 (2− α)

α (1− α)
.

Then for any k ∈ R\ {0} the Galerkin discretiza-

tion (3) of (2) with conforming piecewise linear

elements S1
T (α) is well posed if k 6= ±kα. For

k = ±kα, the system matrix Ak is singular and

its kernel has dimension one.
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Figure 1: Family of triangulations T (α) of the
unit square (−1, 1)2 depending on a parameter
α ∈ (0, 1).

This lemma shows that there exists �nite el-
ement meshes for two-dimensional domains such
that the discrete Helmholtz problem is not well
posed. In our presentation, we describe an al-
gorithm MOTZ (marching of the zeroes) which
is based on a discrete unique continuation prin-
ciple, which takes as an input the �nite element
mesh and gives the result �certi�ed� if the dis-
cretization (3) leads to a well posed linear sys-
tem. Otherwise the algorithm returns the out-
put �critical�.
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