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Abstract

We study the unique solvability of the discretized
Helmholtz problem with Robin boundary condi-
tions using a conforming Galerkin hp-finite ele-
ment method.

Instead of employing the classical compact
perturbation argument by Schatz (1974) we will
introduce a new and more direct approach to
prove discrete solvability by mimicking the tools

for proving well-posedness of the continuous prob-

lem directly on the discrete level. In this way,
a computable criterion is derived which certi-
fies discrete well-posedness without relying on
an asymptotic perturbation argument. By using
this novel approach we obtain a) new existence
and uniqueness results for the hp-FEM for the
Helmholtz problem b) examples for meshes such
that the discretization becomes unstable (stiff-
ness matrix is singular), and c¢) a simple check-

ing Algorithm MOTZ “marching-of-the-zeros” which

guarantees in an a posteriori way that a given
mesh is certified for a well-posed Helmholtz dis-
cretization.
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1 Setting

In this paper, we consider the numerical dis-
cretization of the Helmholtz problem for mod-
elling acoustic wave propagation in a bounded
Lipschitz domain Q ¢ R?, d = 1,2, with bound-
ary I' := 0€2. Robin boundary conditions are
imposed on I' and the strong form is given by
seeking u, s.t.

—Au—Fku =f inQ,

%—iku =g onl,

(1)

where n denotes the outer normal vector and
k € R\ {0} is the wavenumber.

The well-posedness of this problem follows
from Fredholm’s alternative by proving that the

homogeneous problem has only the trivial solu-
tion. This follows from the unique continuation
principle.

We consider the discretization of this equa-
tion (in variational form) by a conforming Galerkin
method. The established proof of well-posedness
for this discretization goes back to [2] and is
based on a perturbation argument: the sub-
space which defines the Galerkin discretization
has to be sufficiently “rich” in the sense that
a certain adjoint approximation property holds.
However, this adjoint approximation property
contains a constant which is a priori unknown.
The existing analysis gives insights into how the
parameters defining the Galerkin space should
be chosen asymptotically but does not answer
the question whether, for a concrete finite di-
mensional space, the corresponding Galerkin dis-
cretization has a unique solution.

In this paper, we study whether the con-
forming Galerkin discretization of the Helmholtz
problem with Robin boundary conditions can
lead to a system matrix which is singular and
how to define a computable criterion to guaran-
tee that for a given mesh the conforming Galerkin
discretization is well posed.

As a prelude, we start off with some general
remarks. Let Q be a finite interval (in 1D) or
a bounded polygonal domain (in 2D). We de-
note the L? () scalar product by (-,-) and the
L*(T) scalar product by (-,-)p. H'(Q) is the
usual Sobolev space consisting of L?(2) func-
tions whose gradients exist in a weak sense and
belong to L?. The weak form of (1) is given by:

find u € H' (Q) s.t. ag (u,v) =F(v) Yve H (Q),

@)
where aq i, (u,v) := (Vu, Vo)—k? (u,v), by, (u,v) :=
—ik (U,U)F, ar = aO,k+bk7 and F' (U) = (f,?))+
(gv U)F'

Let T = {7 : 1 <i < N} denote a simplicial
finite element mesh for the domain € and for
p €N, let

S%)-::{UECO(Q)|VT€T ul, €Pp}.
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The usual nodal basis for Sg is denoted by b;,
1 <i < n, where n := dim S}.. The conforming
hp finite element discretization of (1) is given by

find u € S s.t. ay (u,v) =F(v) YveSh.
(3)
The equivalent matrix formulation is

Ayu=F (4)

with the matrix Ay = (O‘T»s)fsﬂ e C™*" and
the right-hand side F = (f,)"_, € C" given by

ars = ag (bs,by) and f, = F(b,).

It is well known that the sesquilinear form ay (-, -)
satisfies a Garding inequality in H! (Q) as well
as in Sg- and Fredholm’s alternative tells us that
well-posedness of (2) and (3) follow from unique-
ness. Hence, (3) is well posed if the following
implication holds:

ar (u,v) =0 Yve Sk (5)
= u=0. (6)

We note that if we choose v = w in (5) and
consider the imaginary part, we get

0=Tmay (u,u) = =k lul|z = ulp = 0.

2 Main Results

In this section, we present the main results and
refer for the proofs to [1]

Theorem 1 Let 2 C R be a bounded interval
and consider the Galerkin discretization (3) of
(2) with conforming hp finite elements. Then,
for any k € R\ {0} the matriz Ay in (4) is reg-
ular.

In two spatial dimensions, an analogue of
Theorem 1 does not hold in that generality as
can be seen from the following example.

Lemma 2 Let o € (0,1) and the triangulation
T («) as depicted in Figure 1. Let

_|6(2—q)
Ko i= \/ a(l—a)

Then for any k € R\ {0} the Galerkin discretiza-
tion (3) of (2) with conforming piecewise linear
elements S}r(a) is well posed if k # +kq. For
k = tkq, the system matriz Ay is singular and
its kernel has dimension one.

(-1,1 L1)

(11 ()

Figure 1: Family of triangulations 7 («) of the
unit square (—1, 1)2 depending on a parameter
a e (0,1).

This lemma shows that there exists finite el-
ement meshes for two-dimensional domains such
that the discrete Helmholtz problem is not well
posed. In our presentation, we describe an al-
gorithm MOTZ (marching of the zeroes) which
is based on a discrete unique continuation prin-
ciple, which takes as an input the finite element
mesh and gives the result “certified” if the dis-
cretization (3) leads to a well posed linear sys-
tem. Otherwise the algorithm returns the out-
put “critical”.
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