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Abstract

High intensity (focused) ultrasound HIFU is used
in numerous medical and industrial applications
ranging from litotripsy and thermotherapy via
ultrasound cleaning and welding to sonochem-
istry. We will highlight some mathematical and
computational aspects related to the relevant
nonlinear acoustic phenomena, namely

• modeling of high intensity ultrasound phe-
nomena as second and higher order wave
equations

• some parameter asymptotics

• absorbing boundary conditions for the treat-
ment of open domain problems

• optimal shape design

• imaging with nonlinear waves

The contents is based on joint work with Vanja
Nikolić, Gunther Peichl, William Rundell, Igor
Shevchenko, and Mechthild Thalhammer.
Keywords: nonlinear acoustics, singular lim-
its, absorbing boundary conditions, shape opti-
mization, nonlinearity parameter imaging.

1 Models of nonlinear acoustics

Our work on partial differential equations (PDEs)
modeling nonlinear acoustic wave propagation is
motivated by numerous applications of high in-
tensity focused ultrasound ranging from lithotripsy
and thermotherapy via welding and sonochem-
istry to ultrasound cleaning.

The following brief derivation of the funda-
mental acoustic equations closely follows the re-
view [14]. More details can be found, e.g, in
[9, 10].

The main physical quantities involved in the
description of sound propagation are

• the acoustic particle velocity ~v;

• the acoustic pressure p;

• the mass density %;

that can be decomposed into their constant mean
and a fluctuating part

~v = ~v0 + ~v∼ , p = p0 + p∼ , % = %0 + %∼,

where ~v0 = 0 in the absence of a flow.
These quantities are interrelated to each other

by the following physical balance and material
laws:

• the Navier Stokes equation (balance of mo-
mentum) which under the assumption∇×
~v = 0 reads

%
(
~vt +∇|~v|2

)
+∇p =

(4µV
3

+ ζV

)
4~v ,
(1)

where ζV is the bulk viscosity and µV the
shear viscosity;

• the equation of continuity (balance of mass)

∇ · (%~v) = −%t ; (2)

• the equation of state relating the acoustic
pressure and density fluctuations p∼ and
%∼:

%∼ =
p∼
c2
− 1

%0c4

B

2A
p2
∼−

κ
%0c4

( 1

cV
− 1

cp

)
p∼t ,

(3)
where B/A is the parameter of nonlinear-
ity, κ the adiabatic exponent, and cp, cV
the specific heat capacitance at constant
pressure and constant volume, respectively.

Analogously to the derivation of the linear wave
equation from the linearized versions of these
equations, we proceed by subtracting the diver-
gence of (1) from the time derivative of (2) to
eliminate the linear velocity term, and inserting
the state equation to eliminate the mass den-
sity. In the resulting second order in time PDE,
we may neglect higher order terms, according
to a certain hierarchy, which in nonlinear acous-
tics is known as Blackstock’s scheme [2,27] and
distinguishes between the following categories:
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• First order. These are linear with respect
to the fluctuating quantities and are not
related to any dissipative effect;

• Second order. Terms of this order are ob-
tained as the union of quadratic and dis-
sipative linear terms (that is, those terms
that contain the viscosities as pre-factors);

• Higher order. All remaining terms.

Blackstock’s scheme therefore prescribes that one
should retain only first and second order terms.
Additionally, a result called the substitution corol-
lary allows us to replace any quantity in a sec-
ond or higher order term by its first order ap-
proximation.

This yields Kuznetsov’s equation [25,26]

p∼tt − c24p∼ − b4p∼t

=

(
1

%0c2

B

2A
p2
∼ + %0|~v|2

)

tt

(4)

where b is the diffusivity of sound, b = 1
%0

(
4µV

3 +

ζV

)
+ κ

%0

(
1
cV
− 1

cp

)
and we have related the ve-

locity to the pressure via the linearization of (1),

%0~vt = −∇p∼ , (5)

which together with the substitution corollary
allowed us to replace c2∇ · 4~v = ∇ · ~vtt =
− 1
%0
4p∼t; moreover, again using the substitu-

tion corollary we set ρ0c
24|~v|2 = ρ0|~v|2tt,

κ
%0c2

p∼ttt = κ
%0
4p∼t.

If we ignore local nonlinear effects modeled
by the quadratic velocity term, thus approxi-
mating ρ0|~v|2tt ≈ 1

ρ20c
2 p

2
tt, we arrive at the West-

ervelt equation

p∼tt − c24p∼ − b4p∼t =
βa
%0c2

p2
∼tt (6)

with βa = 1 + B/(2A), cf., [33]. Under the al-
ready made assumption ∇× ~v = 0 on a simply
connected domain there exists an acoustic veloc-
ity potential ψ with ~v = −∇ψ, whose constant
part by (5) can be chosen such that

%0ψt = p . (7)

Hence both equations (4) and (6) can as well be
written in terms of the acoustic velocity poten-
tial ψ

ψtt − c24ψ − b4ψt
=

1

c2

(
βa(ψt)

2 + sWK
[
c2|∇ψ|2 − (ψt)

2
])
t

(8)

with sWK = 0 for (6) and sWK = 1 for (4).
Further simplifications of the model lead to

the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equa-
tion [35]

2cp∼xt − c24yzp∼ −
b

c2
p∼ttt = − βa

%0c2
p2
∼tt (9)

(with the coordiate system possibly rotated so
that x is the direction of sound propagation and
∆yz the Laplace operator with respect to the
coordinates orthogonal to the propagation di-
rection) and the well-known Burgers’ equation
in one space dimension, [5].

On the other hand, taking into account in-
terdependenc of further quantities such as en-
tropy, heat flux and temperature, we arrive at
higher order models of nonlinear acoustics, such
as the Blackstock-Crighton equation [2, 4, 9]

(∂t − a∆)
(
ψtt − c2∆ψ − b∆ψt

)
− r∆ψt

= −
(

B

2Ac2
(ψ2

t ) + |∇ψ|2
)

tt

(10)

where a = ν
Pr is the thermal conductivity or the

Jordan-Moore-Gibson-Thompson equation JMGT
[8,12,13,31]

τψttt + ψtt − c2∆ψ − b∆ψt

= −
(

B

2Ac2
(ψt)

2 + |∇ψ|2
)

t

(11)

where τ is the relaxation time, that allows to
counteract the infinite speed of propagation para-
doxon arising in (4) and (6). Also replacement
of the strong damping term b∆ψt by fractional
order derivatives leads to refinements of the model,
such as, e.g., the fractional JMGT equation

ταD2+α
t ψ + ψtt − c2∆ψ − (δ + ταc2)∆Dα

t ψ

=

(
B

2Ac2
(ψt)

2 + |∇ψ|2
)

t
(12)

or Kuznetsov’s equation with Caputo-Wismer
Kelvin damping

ψtt − c2∆ψ − δ∆Dα
t ψ

=

(
B

2Ac2
(ψt)

2 + |∇ψ|2
)

t

taking into account power law frequency depen-
dence of the attenuation.

Challenges in the analysis of these models
arise from the fact that they exhibit potential
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degeneracy or equivalently nonlinear state de-
pendence of the wave speed. Let us illustrate
this by means of the Westervelt equation (with
u denoting the pressure)

utt−c2∆u−b∆ut = −k
2 (u2)tt = −kuutt−k(ut)

2

that is,

(1 + ku)utt − c2∆u− b∆ut = −k(ut)
2

This reveals the fact that degeneracy occurs for
u ≤ − 1

k and similar considerations hold for the
other equations mentioned above (Kuznetsov,
JMGT, Blackstock-Crighton). The equation above
also illustrates state dependence of the effective
wave speed, since we can rewrite it as

utt − c̃2∆u− b̃(u)∆ut = f(u)

with c̃(u) = c√
1+ku

, b̃(u) = b
1+ku , f(u) = k(ut)2

1+ku

as long as 1+ku > 0 – otherwise the model loses
its validity.

2 Singular limits

We are interested in the question whether some
of the above models can be recovered as lim-
its of others as certain parameters tend to zero.
Examples of such singular limits are vanishing
thermal conductivity a ↘ 0 in the Blackstock-
Crighton equation (10) or vanishing relaxation
time τ ↘ 0 in the JMGT equation (11). In both
cases the formal limit is obviously Kuznetsov’s
equation (4). Mathematically, this leads to the
question in which function spaces the limits of
ψa and ψτ exist and at which rate convergence
occurs. Interestingly, but also intuitively, this
requires a compatibility condition on the initial
data in case of (10), while this is not needed
for (11), where the highest order time deriva-
tive term vanishes as in the limiting case, which
is not the case for (10). Further examples are
the limit as α ↗ 1 in (12) with limit equation
(11), where the leading derivative order in the
PDE changes with α; the limit as δ ↘ 0 in (6)
or (4), which leads to a change of the qualitative
behaviour from global in time well-posedness to
potential blow up in finite time.

Details on this can be found, e.g., in [3, 15–
19,24]

3 Absorbing boundary conditions

Whenever a physical acoustic domain is trun-
cated for computational purposes, appropriate

Figure 1: Computational setup with absorbing
boundary ΓA

boundary conditions have to be imposed in or-
der to avoid spurious reflections at the artificial
boundary, see, e.g., Fig. 1 for a typical com-
putational setup in the simulation of ultrasound
waves focused by an array of piezoelectric trans-
ducers. The vast majority of approaches for
this purpose fall under one of the two categories
of perfactly matched layers PML or absorbing
boundary conditions ABC. We here focus on
the latter paradigm. The derivation of ABCs
is based on (formal) pseudodifferential calculus
to approximately factorize the wave differential
operator, which for this purpose has to be lin-
earized for any of the above models. In case
of the Westervelt equation in two space dimen-
sions, this leads to the following zero and first
order conditions

un = −1
c

√
1 + kuut

un tt = −1
c

√
1 + kuuttt + 1

2c

√
1 + kuuϑϑt

+ kc
4
√

1+ku

(
ut − 1

1
c

√
1+ku

un
)
utt

− kc

4
√

1+ku
3

(
(1

2ut + c√
1+ku

un
)
uϑϑ

on ∂Ω, where n is the normal and θ the tan-
gential direction. An analysis of the damping
properties of the resulting boundary conditions
can be carried out by means of energy estimates.
Details and computational results can be found
in [23,30].

4 Optimization problems related to ul-
trasound focusing

The task of focusing the nonlinearly propagat-
ing waves in HIFU leads to PDEe constrained
optimization problems. As an example, consider

Suggested members of the Scientific Committee:
Lehel Banjai, Marc Bonnet



WAVES 2022, Palaiseau, France 4

Figure 2: Schematic of an acoustic lens

shape optimization of an acoustic lens, see Fig. 2
Taking into account acoustic-acoustic coupling
between lens and fluid domain, as well as power
law damping D(∇ut) = b(1 + δ|∇ut|q−1)∇ut,
this leads to the problem

min
Ω+∈Oad

u∈L2(Ω×[0,T ])

∫ T

0

∫

Ω
(u− ud)2 dx ds

subject to




1+ku
λ utt − div(1

%∇u)− div(D(∇ut))
= − k

λ(ut)
2 in Ω+ ∪ Ω−

[[u]] = 0 on Γ = ∂Ω+[[
1
%
∂u
∂n+

+D(∇ut) · n+

]]
= 0 on Γ = ∂Ω+

u = 0 on ∂Ω

(u, ut)|t=0 = (u0, u1)

where [[·]] denotes the jump over the interface,
Oad is a set of admissible domains and the coef-
ficients λ, %, b, k take different values in the

two subdomains, that is, λ =

{
λ+ in Ω+

λ− in Ω−
,

etc. Using the method of mappings, one can
define domain deformations that allow to com-
pute a shape derivative in (a) strong and (b)
weak form, respectively; that is, as a functional
(a) concentrated on the interface Γ, or (b) dis-
tributed over the domain Ω. Based on this, gra-
dient descent methods for computing improved
shapes can be derived. For details we point
to [20,28].

5 Imaging with nonlinear ultrasound waves

We finally dwell on recent work on nonlinearity
parameter imaging [1,6,7,11,29,32,36,37], which
leads to the inverse problem of identifying the
space-dependent coefficient k(x) in Westervelt

equation
(
u+ k(x)u2

)
tt
− c2

0∆u− δ∆Dα
t u = r

in Ω× (0, T )

u = 0 on ∂Ω× (0, T ),

u(0) = 0, ut(0) = 0 in Ω

(with excitation r) from boundary observations

g = u on Σ× (0, T ),

where Σ ⊂ Ω represents the receiving transducer
array. Challenges in this problem result form
the fact that the model equation is nonlinear,
with the nonlinearity occuring in the highest
order term. The unknown coefficient k(x) actu-
ally appears in this nonlinear term. Moreover,
k(x) is spatially varying whereas the data g(t) is
in the “orthogonal” time direction. This is well
known to lead to severe ill-conditioning of the
inverse problem. In [21,22], we carry out inves-
tigations on the degree of this ill-posedeness as
well as its dependence on the fractional order
α ∈ [0, 1] of attenuation. Moreover, a unique-
ness result for the linearized problem (see also
[34]) as well as some preliminary reconstruction
results based on Newton’s method are provided.
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