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Elasticity, skeletal muscle, and waves?
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Abstract

In this talk, we survey recent work on the model-
ing, simulation and validation of a fully 3-D con-
tinuum elasticity approach for skeletal muscle
dynamics. Skeletal muscle is modelled as a fibre-
reinforced hyperelastic material, with other con-
nective tissues such as aponeurosis and tendon
being similarly described. These fibres are capa-
ble of nonlinear activation. After discretization
(semi-implicit in time, FE in space), the model
is validated against physiological data, and then
used to understand the impact of muscle archi-
tecture, mass and tissue properties on questions
of physiological interest.
Keywords: Nonlinear elasticity, skeletal muscle
mechanics, three-field formulation.

1 Background

Skeletal muscles exhibit fascinating structural
and mechanical properties. Skeletal muscle is
composed of cells collectively referred to as fibers,
which themselves contain contractile proteins ar-
ranged longtitudinally into sarcomeres (Fig.1).
These latter respond to signals from the nervous
system, and contract; this leads to a strong me-
chanical anisotropy in the system. Muscles react
to mechanical forces - they contain connective
tissue and fluid, and are linked via tendons to
the skeletal sytem - but they also are capable of
activation via stimulation (and hence, contrac-
tion) of the sacromeres . The restorative along-
fibre force depend on departures from a charac-
teristic length of the sarcomeres; diseases such
as cerebral palsy cause this characteristic length
to change, thereby impacting muscle force.

Prior to the landmark paper by A.V. Hill [1],
it was believed a stimulated muscle was like an
elongated spring that has the capacity to con-
tract and do work. However, this failed to ex-
plain an important distinction between ’usual’
elastic materials and skeletal muscle: the force
exerted by a pure elastic body depends on its
strain; however, in muscle fibres, force is addi-

Figure 1: Hierarchical depiction of muscle,
[13]. We study the elastic response of muscle-
connective tissue complex at the mm-cm scale.

tionally dependent on the velocity of contrac-
tion. Hill’s paper showed that even for isomet-
ric (fixed length) contractions, muscles fibres are
capable of shortening. Hill suggested that skele-
tal muscles have two distinct kinds of elastic
components in series with each other: a contrac-
tile component that shortens when stimulated
and a nonlinear elastic component which length-
ens under tension. The resulting 1-D mathemat-
ical model (see Fig.2) proposed by him was both
simple and remarkable in its predictive capabil-
ities. Since then, experimentalists have gained
much insight into mammalian skeletal muscle
especially at small scales such as those of sar-
comeres, single fibres and small muscles. Exper-
imental data on muscle contraction is typically
determined assuming the muscle is fully active,
changes length at constant velocity, and consid-
ers forces and length changes in only the lon-
gitudinal direction. This information, incorpo-
rated into refinements of Hill’s model, has lead
to important advances in biomechanics.

In Hill’s 3-element model Fig 2, a muscle fi-
bre of total length L is described as L = LPE =
LSE + LCE , where LPE , LCE and LCE are the
lengths of the passive, contractile and series ele-
ments. The force in the contractile element de-
pends on both the stretch λ and the time rate
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Figure 2: Hill’s 3-element model: PE denotes
the passive element, CE is the (nonlinear) con-
tractile element, SE encapsulates the elastic
properties of the fibre.

of stretch λ̇:

FCE(LCE , v) = Fmax

[
a(t)F̂v( λ̇)F̂a(λ)

]

︸ ︷︷ ︸
Active

+FmaxF̂p(λ)︸ ︷︷ ︸
Passive

.

The springs themselves are assumed massless,
and to move in 1 direction.

Skeletal muscles consist of many fibres, ar-
ranged in a striated manner (in contrast to car-
diac muscle). We know surprisingly little about
large muscles contract, particularly when they
are not fully active or contract with varying ve-
locities. We also do not know, in detail, what
the effects of changing shape, muscle density
or material properties (fat infiltration, stiffening
due to neuromuscular diseases) have on mus-
cle force output. Understanding how the con-
tractile elements interact with the tissue proper-
ties of the whole muscle, how deformations may
arise in all three dimensions during contraction,
and how transverse compression/shape changes
affect force output are questions which cannot
be answered by 1-D models. For example, ex-
perimental evidence suggests that the Hill-type
approximation yields poor force predictions for
larger muscles, [11]. Additionally, it has been
experimentally observed that elastic waves may
propagate through the muscle; this is not possi-
ble to explain the single-fibre model of muscle.

Some of the pioneering works on a fully 3-D
model of muscle include [4,6,7], who considered

a 3-D constitutive model for incompressible bi-
ological soft tissues within an isometric setting,
and FEM implementations. In this talk, we’ll
first present a brief review of the existing work
on 3-D modelling of skeletal muscle mechanics.
We’ll describe our model, and some of the ex-
perimental data used to fit parameters. The dis-
cretization of the highly nonlinear system is via
a semi-discretization in time, and a finite ele-
ment discretization in space.

2 Mathematical model

We focus on length scales larger than those of
individual fibres, which allows us to capture the
role of structure and tissue properties on large
muscle mechanics. Muscle is represented as a
fiber-reinforced hyperelastic material, where the
fibre properties are governed by the myofilament
contractile forces described Hill-type models, and
the composite properties are represented a Neo-
Hookean ’base material’ encapsulating proper-
ties of muscle tissue across several scales, includ-
ing intracellular stiffness and extracellular mate-
rial. This muscle is encased, as needed, by con-
nective tissues (tendon/aponeurosis) modelled
as Yeoh-type materials.

Our work builds on that of [6, 7]. We work
with a three-field variational formulation pio-
neered in [2, 3] (see also [5]). The implemen-
tation is within the deal.ii finite element li-
brary, and is based on the excellent tutorial on
finite deformations in an isotropic Neo-Hookean
material. [8].

We first discuss quasi-static deformations,
consistent with an isometric system in which
neither muscle mass nor velocity is involved. We
use a mixed Jacobian formulation ( [2,3])to solve
for the unknown displacement u, the pressure p,
and a dilation D in the current configuration Ω,
with Π := (u, p,D) ∈ (H1(Ω))3×L2(Ω)×L2(Ω).
We seek the state Π which is a stationary point
of a potential (as in [8]).

The constitutive relations for hyperelastic ma-
terials are given, as is standard, in terms of the
Helmholtz free energy density W (B), which de-
pends on the left Cauchy-Green tensor B. We
can split the energy density into a volumetric
and isochoric part; the latter is then split into
the along-fibre and base material contributions

W (B) = Wvol(J)+Wiso(B̄) = Wvol(J)+Wfibre+Wbase.

See, for instance, [6,12]. The precise dependance
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of W on different invariants of B are obtained
via fitting to experimental data; details can be
found in [9,10,12,14,15]. As an instance: in or-
der to obtain the energyWfibre (which is consis-
tent with the original Hill-type model), we con-
sider single-fibre data. In the laboratory setting,
what is measured is the dependance of along-
fibre stress with isochoric stretch λiso. So, we
must first fit the stress to the data (Fig 3 [11];
we’d then use the relation

λiso
∂Wfibre(λiso)

∂λiso
= σfibre(λ)

to obtain Wfibre. A similar procedure is carried
out for the other components of the model. In
some, the experimental data is directly in terms
of the strain energy; in others (as for the fibre),
it is not.

The Euler-Lagrange equations for stationar-
ity of the potential for the isometric setting can
then be written as

−div(σ(u)) = b (static equilibrium)

(1)

D = det(I +∇u) =: J(u) (dilation)
(2)

p =
δ(Wvol(D))

δD
(pressure response)

(3)

We prescribe either zero traction boundary con-
ditions on the faces, or Dirichlet conditions (de-
pending on the experiment). We also allow for
the combination of distinct tissues - muscles,
aponeurosis and tendon - for which the consti-
tutive laws have to be obtained.

As in [8], we use a total Lagrangian formu-
lation. The Euler-Lagrange equations leads to a
(nonlinear) weak formulation. We use a finite el-
ement approach, combined with a Newton-Raphson
strategy to solve the nonlinear system; the sys-
tem is implemented within the deal.ii library.

In case of a fully dynamic system, inertial
effects due to mass become important. In addi-
tion, the along-fibre contributions to the stress
are given by a (nonlinear) relationship involv-
ing both the stretch and the stretch rate; this
is due to Hill’s model. For this reason, we must
directly work with the dynamic system with the

Figure 3: From [11]: Bezier-curve fits to single-
fibre data. Left: Force- velocity F̂v, (M): Active
force-length F̂ a, R: Passive force-length F̂p.

additional unknown velocity v.

∂

∂t
(ρv) = −div(ρv ⊗ v) + div(σ(u)) + b,

D = J(u),

p =
δ(Wvol)

δD
.

Once again, zero traction and (possible inho-
mogenous) Dirichlet conditions are allowed. We
use a semi-implicit discretization in time, and a
Q1× P0× P0 discretization in space.

3 Results

Our mathematical models, and associated finite
element implementations, allow for an explo-
ration of a range of questions in physiology. A
first and important question to address is: in
pennate muscles (those in which the line-of-action
of a load is not long the direction of fibres), does
the curvature of fibres change? This has been
observed in MRI studies, and cannot be readily
explained by 1-D Hill-type models.

As a next investigation, we examine the me-
chanical energy within a muscle. During muscle
contraction, chemical energy is converted to me-
chanical energy, which in turn is distributed and
stored in the tissue as the muscle deforms or is
used to perform external work. We showed how
energy is distributed through contracting mus-
cle during fixed-end contractions; subsequently,
we study the distribution of tissue energy when
mass effects are taken into account. Some of
these results will be described in the talk, and
also form the basis of validation of our model,
[12, 14,15].

As a final demonstration, we will describe
recent work on cerebral palsy. In this condi-
tion,there are changes to the size, shape and
stiffness of the tissues; additionally, the length
of the sacromeres changes (resulting in changes
to the curves in Fig. 2). MRI data is used to
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generate hexahedral meshes, and we are able to
assess the impact of these changes to the me-
chanical work done by muscles. [16].
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