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Abstract

We provide a link between the virial theorem in
quantum mechanics and the method of multi-
pliers in theory of partial differential equations.
After giving a physical insight into the tech-
niques, we show how to use them to deduce
the absence of eigenvalues and other spectral
properties for electromagnetic Schrödinger op-
erators. We focus on our recent developments
in non-self-adjoint settings, namely on Schrö-
dinger operators with matrix-valued potentials,
relativistic operators of Pauli and Dirac types,
and complex Robin boundary conditions.
Keywords: virial theorem, method of multipli-
ers, absence of eigenvalues, uniform resolvent es-
timates, electromagnetic Schrödinger and Dirac
operators, non-self-adjoint perturbations, Robin
boundary conditions

1 Quantum-mechanical background

In quantum mechanics, physical states and ob-
servables are represented by vectors and self-
adjoint operators in a Hilbert space H, respec-
tively. The expectation value of an observable A
to be in a state Ψ is given by the inner product
〈A〉 := (Ψ, AΨ) and the outcomes of measur-
ing are the spectrum of A. The most prominent
observable is the Hamiltonian H representing
the total energy of the system. It determines
the evolution of states in time t through the
Schrödinger equation

i
dΨ

dt
= HΨ . (1)

The eigenvalues λ of H are energies of the
system for which (1) admits stationary solutions
of the type e−iλtψ, where ψ is an eigenvector
of H corresponding to λ; it is customarily called
a bound state (or trapped mode). The exclusion
of eigenvalues constitutes a first step in justify-
ing transport for a quantum system.

2 The virial theorem

How to achieve the absence of eigenvalues of a
given operator H? A powerful tool is repre-
sented by an abstract version of the virial the-
orem (see [10, Sec. 13 & Notes] for a historical
background). Let us present a formal statement
first.

Let T be another self-adjoint operator in H.
Assume that the commutator of T with H is
positive in a sense. For instance, in a very re-
strictive sense, that there exists a positive num-
ber a such that (we do not care about operator
domains for a moment)

i[H,T ] ≥ a I (2)

in the sense of quadratic forms in H.
Now, let λ be an eigenvalue ofH correspond-

ing to an eigenvector ψ, normalised to 1 in H.
That is, the stationary Schrödinger equation

Hψ = λψ (3)

holds. Then we get a contradiction

a ≤ (ψ, i[H,T ]ψ)

= i(Hψ,Tψ) − i(Tψ,Hψ)

= i(λψ, Tψ) − i(Tψ, λψ)

= 0 ,

(4)

where the first and last equalities employ the
self-adjointness of H and T . Note that our con-
vention is that the inner product (·, ·) of H is
linear in the second component.

Hence, the positivity of the commutator pre-
vents the existence of eigenvalues. This is the
formal statement of the virial theorem. Schemat-
ically:

positivity (2) =⇒ σp(H) = ∅ ,

where σp(H) denotes the point spectrum of H,
i.e. the set of eigenvalues.
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3 The method of multipliers

The virial theorem is closely related with the
method of multipliers, usually attributed to the
original development of Morawetz [9].

Take an inner product of both sides of (3)
with the vector φ := iTψ (this is the multiplier
of the method) and take twice the real part of
the obtained identity:

(ψ, i[H,T ]ψ) = (iTψ,Hψ) + (Hψ, iTψ)

= 2ℜ(φ,Hψ)
↓
= λ 2ℜ(φ,ψ)
= λ [(iTψ, ψ) + (ψ, iTψ)]

= 0

(here the arrow points to the initial identity, the
other equalities are manipulations). In this way
we have arrived at the same identity as in (4)
and the same contradiction under the positivity
hypothesis (2).

4 An evolution interpretation

Why the positivity of the commutator is related
to the (total) absence of eigenvalues? How to
choose the auxiliary (so-called conjugate) oper-
ator T ? It is useful to get a physical insight
first.

Differentiating the expectation value of T
with respect to time t and using (1), we (for-
mally) get

d〈T 〉
dt

=

(
dΨ

dt
, TΨ

)
+

(
Ψ, T

dΨ

dt

)

=
(
− iHΨ, TΨ

)
+

(
Ψ, T (−iHΨ)

)

= i
(
Ψ,HTΨ

)
− i

(
Ψ, THΨ

)

=
(
Ψ, i[H,T ]Ψ

)

=
〈
i[H,T ]

〉
. (5)

Hence the evolution of the expectation value
of T is given by the expectation value of the
commutator with H multiplied by i (without
this multiplication, the commutator [H,T ] is ac-
tually skew-adjoint).

It follows from (5) and (2) that the differen-
tial inequality

d〈T 〉
dt

> a

holds (assuming the normalisation ‖Ψ‖ = 1),
which in turn implies

〈T 〉(t) > 〈T 〉(0) + at

for all times t ≥ 0. Consequently,

lim
t→+∞

〈T 〉(t) = +∞ . (6)

In summary, the positivity of the commutator (2)
implies that the expectation value of T diverges.

5 The free Hamiltonian

To answer the pertinent questions at the begin-
ning of Section 4, let us focus on the Hamilto-
nian of a free (i.e. no forces) non-relativistic (i.e.
no spin) particle. It is customarily represented
by the operator

H0 := −∆ in L2(Rd) , (7)

which is self-adjoint provided its domain is cho-
sen to be the Sobolev space W 2,2(Rd). Note
that H0 = P 2

0 := P0 · P0, where the dot de-
notes the scalar product in Rd and P0 := −i∇,
with domain being the Sobolev space W 1,2(Rd),
represents the momentum of the particle. In
this representation, the position of the parti-
cle is represented by the maximal operator of
multiplication X by the space variable x, i.e.
Xψ(x) = xψ(x).

Now, let T0 be the quantum counterpart of
the radial momentum of the particle:

T0 :=
X · P0 + P0 ·X

2
= −i x · ∇ − i

d

2
. (8)

Note that we had to take a symmetrised ver-
sion of the classical radial momentum X · P0

(in order to make T0 self-adjoint, at least for-
mally), since the observables X and P0 do not
commute in quantum mechanics. Then (6) can
be interpreted in physical terms as that the par-
ticle escapes to infinity of Rd for large times (for
the radial derivative diverges). That is, the par-
ticle is not bound, it propagates. More specifi-
cally, the stationary solutions of the Schrödinger
equation (1), corresponding to initial data being
eigenfunctions, do not exist.

It remains to analyse the validity of (2) for
the free Hamiltonian (7) and the radial momen-
tum (8). It is easily verified that (still formally)

i[H0, T0] = 2H0 .

Here the right-hand side is non-negative because,
by an integration by parts,

(φ,H0φ) = (φ,−∆φ) = ‖∇φ‖2 ≥ 0 (9)
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for every φ ∈W 2,2(Rd). However, it is not pos-
itive in the strict sense (2) for σ(H0) = [0,∞).
Nonetheless, a contradiction in the spirit of (4)
is still in order:

2 ‖∇ψ‖2 = (ψ, 2H0ψ)

↓
= (ψ, i[H0, T0]ψ)

= 0 ,

(10)

whenever ψ is an eigenfunction of H0. Indeed,
from this identity we deduce that ψ is constant,
which is not possible for a non-trivial function
in L2(Rd).

In summary, commutators arise in evolution
processes in quantum mechanics and the natu-
ral choice for the conjugate operator for the free
Hamiltonian H0 is given by the radial momen-
tum (8).

6 Dispersion

There is yet another support for the choice (8),
at least if we deal with the Laplacian and its per-
turbations. In fact, the conjugate operator T0
by itself arises as a commutator with the Lapla-
cian:

T0 = i

[
H0,

X2

4

]
.

Consequently,

d2

dt2

〈
X2

4

〉
=

d

dt
〈T0〉 =

〈
i[H0, T0]

〉
,

so the positivity of the commutator i[H0, T0] ac-
tually shows that the expectation value of the
square of the magnitude of the position is a con-
vex function in time: there is a dispersion.

7 Rigorous implementation

There are certainly a number of formal manip-
ulations in the arguments given above. Let us
now show how to justify them for the free Hamil-
tonian.

The eigenvalue equation (3) for the free Ha-
miltonian precisely means that there exists a
non-trivial function ψ ∈W 2,2(Rd) such that

(∇φ,∇ψ) = λ (φ,ψ) . (11)

for any choice φ ∈W 1,2(Rd). This is just a weak
formulation of the Helmholtz equation in Rd.

First of all, notice that we may restrict to
λ ≥ 0 due to the self-adjointness of H0 and (9).

In other words, the existence of non-real and
negative eigenvalues is easily disproved.

Following the arguments given above, our
aim is to choose iT0ψ for the test function (the
multiplier) φ, where the conjugate operator T0
is given by (8). However, it is not clear that ψ
belongs to the domain of T0 (the domain of T0
has not been even discussed) and, even if so,
that φ ∈ W 1,2(Rd). Indeed, the problem is the
unbounded position operator x in the definition
of T0.

To proceed rigorously, we therefore choose
the regularised multiplier

φ := x · ∇(ξnψ) +
d

2
ψ , (12)

where ξn is the cut-off function satisfying, for
every n ∈ N∗, ξn(x) := ξ(x/n), where ξ ∈
C∞
0 (Rd) is such that 0 ≤ ξ ≤ 1, ξ(x) = 1 for

every |x| ≤ 1 and ξ(x) = 0 for every |x| ≥ 2.
Then φ ∈ W 1,2(Rd) because ψ ∈ W 2,2(Rd) and
the multiplication by x is bounded on the sup-
port of ψn. Then we get the ultimate identity
‖∇ψ‖ = 0 of (10) after taking the limit n→ ∞.

The specialty of the free Hamiltonian H0

is that the elliptic regularity implies that the
eigenfunction ψ belongs to W 2,2(Rd). Without
this extra result (which will be particularly the
case when we deal with electromagnetic pertur-
bations below), we only have ψ ∈ W 1,2(Rd).
Then an extra regularisation of the multiplier
iT0ψ consists in replacing the gradient in (12)
by difference quotients, as originally proposed
in our work [5]. Altogether, proceeding rigor-
ously with the regularised multiplier and taking
the limits in the right order is rather painful.
This is probably the reason why necessary reg-
ularisation schemes are usually omitted in the
literature, except for the recent work [5].

8 Electromagnetic perturbations

Of course, the absence of eigenvalues of the free
Hamiltonian H0 can be proved more straight-
forwardly by using the Fourier transform. How-
ever, the advantage of the present method based
on the virial theorem is that it is much more ro-
bust. In particular, the same conjugate opera-
tor T0 applies to electric perturbations ofH0 and
its magnetic version enables one to deal with
magnetic perturbations of H0, too.

Given a scalar function (electric potential)
V : Rd → R and a vector-valued function (mag-
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netic potential) A : Rd → Rd, consider the elec-
tromagnetic Hamiltonian

HA,V := (−i∇−A)2 + V .

Under the minimal hypotheses V ∈ L1
loc(R

d)
and A ∈ L2

loc(R
d) together with a relative small-

ness of the negative part of V with respect to the
magnetic Laplacian −∆A := (−i∇ − A)2, the
operator HA,V is customarily realised as a self-
adjoint operator in L2(Rd) with the form do-
main of HA,V being the magnetic Sobolev space
W 1,2

A (Rd) := {ψ ∈ L2(Rd) : ∇Aψ ∈ L2(Rd)},
where ∇A := ∇ − iA is the magnetic gradient.
Of course, H0,0 = H0 is the free Hamiltonian.

Electric perturbations

In the magnetic-free case, one has

i[H0,V , T0] = 2H0 − x · ∇V ,

so the virial identity reads

2 ‖∇ψ‖2 −
∫

Rd

x · ∇V |ψ|2 = 0 (13)

whenever ψ is an eigenfunction of H0,V .
Clearly, the pointwise repulsivity condition

x · ∇V ≤ 0

implies a contradiction, therefore the absence
of eigenvalues of H0,V . Less restrictively, it is
enough to assume the smallness of the positive
part (x · ∇V )+ in the following integral sense:
There exists a positive number a < 2 such that

∫

Rd

(x · ∇V )+ |ψ|2 ≤ a

∫

Rd

|∇ψ|2 (14)

holds for every ψ ∈ W 1,2(Rd). Our regularisa-
tion scheme described in Section 7 requires the
extra regularity condition

V ∈W 1,p
loc (R

d) , (15)

where p = 1 if d = 1, p > 1 if d = 2 and p = d/2
if d ≥ 3.

The repulsivity condition (14) can be replaced
by the following smallness condition, in which
case (15) is not needed: There exists a positive
number a < 2/(d+ 2) such that

∫

Rd

|V | |ψ|2 ≤ a

∫

Rd

|∇ψ|2 ,
∫

Rd

|x|2 |V |2 |ψ|2 ≤ a2
∫

Rd

|∇ψ|2 ,
(16)

hold for every ψ ∈ W 1,2(Rd). Indeed, it is
enough to integrate by parts in the second term
on the left-hand side of (13) and use the Schwarz
inequality.

Let us summarise the obtained results into
the following theorem.

Theorem 1 Assume (14) with a < 2 or (16)
with a < 2/(d + 2). In the former case assume
in addition (15). Then σp(H0,V ) = ∅.

This theorem is a very special case of a series
of recent results obtained in [6, Thm. 3] and
[4, Thm. 3.4]. However, a first rigorous proof
of (13) (under alternative regularity hypotheses
about V ) goes back to Weidmann [11].

Magnetic perturbations

When there is a magnetic field, the conjugate
operator (8) should be replaced by its magnetic
version

TA :=
X · PA + PA ·X

2
= −i x · ∇A − i

d

2
,

where PA := −i∇A is the magnetic momentum.
For simplicity, let us consider purely magnetic
perturbations of the free Hamiltonian. Then

i[HA,0, TA] = 2HA,0 + (x ·B) ·PA +PA · (x ·B) ,

where B := ∇A−(∇A)T is the magnetic tensor.
Consequently, the virial identity reads

2 ‖∇Aψ‖2 + 2ℑ
∫

Rd

(x ·B) · ψ∇Aψ = 0

whenever ψ is an eigenfunction of HA,0.
Using the Schwarz inequality, we get a con-

tradiction, and therefore the absence of eigenval-
ues of HA,0, provided that the following small-
ness condition holds: There exists a positive
number a < 1 such that

∫

Rd

|x|2 |B|2 |ψ|2 ≤ a2
∫

Rd

|∇Aψ|2 (17)

holds for every ψ ∈ W 1,2
A (Rd). Our regularisa-

tion scheme described in Section 7 requires the
extra regularity condition

A ∈W 1,2p
loc (Rd) , (18)

where p is as below (15).
We have therefore established the following

theorem.
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Theorem 2 Assume (17) with a < 1 and (18).
Then σp(HA,0) = ∅.

It is important that the fundamental hypoth-
esis (17) is gauge invariant (i.e. it does not de-
pend on the choice of A for a given magnetic
field B).

Theorem 2 is a very special case of a series
of recent results obtained in [6, Thm. 3] and
[4, Thm. 3.4]. The sufficient conditions which
guarantee the absence of eigenvalues of HA,V

follow from a full electromagnetic virial identity
there.

Low versus high dimensions

It is interesting that spectral conclusions can
be obtained on the basis of functional inequal-
ities of the type (14), (16) and (17). Because
of the criticality of the Laplacian in dimensions
d = 1, 2, the conditions (16) cannot be satis-
fied for a non-trivial V in these low dimensions.
On the other hand, explicit sufficient conditions
to verify the functional inequalities in high di-
mensions d ≥ 3 follow by the Hardy inequality.
What is more, hypothesis (17) (and other suffi-
cient conditions stated in terms of the magnetic
Laplacian ∇A) is non-void even in dimension
d = 2 due to the existence of magnetic Hardy
inequalities [3].

9 Non-self-adjoint perturbations

There are recent motivations to consider com-
plex electromagnetic fields, including quantum
mechanics [8]. It is clear already from the ma-
nipulations in (4) that the idea based on the
virial theorem becomes useless in this case. On
the other hand, the method of multipliers turns
out to be more flexible.

Let us demonstrate it on the eigenvalue prob-
lem for the magnetic-free Hamiltonian

H0,V ψ = λψ , (19)

where both the potential V and the eigenvalue λ
are allowed to be complex now. We set λ1 := ℜλ
and λ2 := ℑλ, and analogously for V . For sim-
plicity, let us assume the following subordina-
tion condition: There exists a positive number
b < 1 such that

∫

Rd

(|ℜV−|+ |ℑV |) |ψ|2 ≤ b

∫

Rd

|∇ψ|2 (20)

holds for every ψ ∈ W 1,2(Rd). Then the nu-
merical range of H0,V is contained in the cone
|λ2| ≤ λ1, so it enough to explore the presence
of eigenvalues there.

As in Section 3 (and disregarding the neces-
sary regularisation procedures), take an inner
product of both sides of (19) with the func-
tion iT0ψ, where T0 is given by (8), and take
twice the real part of the obtained identity. This
leads to the identity

2 ‖∇ψ‖2 −
∫

Rd

x · ∇V1 |ψ|2 − 2ℑ(x · ∇ψ, V2ψ)

= −2λ2 ℑ(x · ∇ψ,ψ) (21)

which is a non-self-adjoint counterpart of (13).
The idea of [1] is to compensate the appear-

ance of the imaginary part of the inner product
on the second line of (21) with no obvious sign
by further identities obtained by using different
multipliers. First, taking an inner product of
both sides of (19) with the function ψ and tak-
ing the real part of the obtained identity, we get

‖∇ψ‖2 +
∫

Rd

V1 |ψ|2 = λ1 ‖ψ‖2 . (22)

Second, taking an inner product of both sides
of (19) with the function |x|ψ and taking the
real and imaginary part of the obtained identity,
we respectively get

∫

Rd

|x| |∇ψ|2− d− 1

2

∫

Rd

|ψ|2
|x| +

∫

Rd

|x|V1 |ψ|2

= λ1

∫

Rd

|x| |ψ|2 . (23)

and

ℑ
∫

Rd

x

|x| · ψ∇ψ +

∫

Rd

|x|V2 |ψ|2

= λ2

∫

Rd

|x| |ψ|2 . (24)

By taking the clever sum

(21) − (22) +
|λ2|√
λ1

(23) − 2
√
λ1 sgn(λ2) (24) ,

we arrive at the ultimate identity

‖∇ψ−‖2+ |λ2|√
λ1

∫

Rd

|x|
(
|∇ψ−|2 − d− 1

2

|ψ|2
|x|2

)

−
∫

Rd

x

|x| · ∇(|x|V1) |ψ|2 +
|λ2|√
λ1

∫

Rd

|x|V1 |ψ|2

− 2ℑ
∫

Rd

V2 x · ψ−∇ψ− = 0 , (25)

Suggested members of the Scientific Committee:



WAVES 2022, Palaiseau, France 6

where

ψ−(x) := e−i
√
λ1 sgn(λ2) |x| ψ(x) .

Various sufficient conditions for the absence
of eigenvalues of H0,V can be derived from (25).
This has been done in a series of recent pa-
pers [4, 6, 7], including the magnetic field and
obtaining uniform resolvent estimates.

For instance, let d ≥ 3, so that the second
term on the first line of (25) is non-negative by a
weighted Hardy inequality, and assume that the
potential V is purely imaginary. Then H0,V has
no eigenvalues in the cone |λ2| ≤ λ1 provided
that there exists a positive number a < 1/2 such
that

∫

Rd

|x|2 |ℑV |2 |ψ|2 ≤ a2
∫

Rd

|∇ψ|2 (26)

holds for every ψ ∈W 1,2(Rd).

Theorem 3 Let d ≥ 3 and ℜV = 0. Assume
conditions (26) with a < 1/2 and (20) with b <
1. Then σp(H0,V ) = ∅.

10 Relativistic operators

The approach described in the preceding section
can be adapted to electromagnetic Schrödinger
operators with matrix-valued potentials. This
has been done in [4], where we also applied the
results to establish the absence of eigenvalues of
Pauli and Dirac operators.

11 Boundary perturbations

The flexibility of the method of multipliers, par-
ticularly due to the developments described in
Section 9, enables one to consider elliptic opera-
tors constrained to subdomains of the Euclidean
space. In [5], we developed the method to study
spectral properties of the Laplacian in the half-
space Rd−1×(0,∞), subject to Robin boundary
conditions

− ∂ψ

∂xd
+ αψ = 0 ,

where α : Rd−1 × {0} → C plays the role of a
strongly localised potential. For instance, there
are no eigenvalues provided that α is repulsive
in the sense that

α ≥ 0 and x · ∇α ≤ 0 .

Moreover, we derive uniform resolvent estimates.

The half-space can be regarded as a degen-
erate situation of conical domains intensively
studied in recent years. In this respect, let us
particularly mention the proof of the absence
of eigenvalues of the Laplacian in non-convex
conical sectors, subject to no specific boundary
conditions [2]. On the other hand, it is easy
to construct square-integrable solutions to the
eigenvalue problem in a half-space.
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